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Abstract: Photovoltaic solar energy is booming due to the continuous improvement in photovoltaic
panel efficiency along with a downward trend in production costs. In addition, the European Union
is committed to easing the implementation of renewable energy in many companies in order to
obtain funding to install their own panels. Nonetheless, the nature of solar energy is intermittent and
uncontrollable. This leads us to an uncertain scenario which may cause instability in photovoltaic
systems. This research addresses this problem by implementing intelligent models to predict the
production of solar energy. Real data from a solar farm in Scotland was utilized in this study. Finally,
the models were able to accurately predict the energy to be produced in the next hour using historical
information as predictor variables.

Keywords: photovoltaic energy; machine learning; energy forecasting; solar farm

1. Introduction

Renewable energies are attracting more and more interest in the energy industry,
contrary to fossil fuels. This is because renewable energies do not produce greenhouse gas
emissions and cause climate changes. They are inexhaustible sources and their waste is easy
to treat. In addition to this, the recent advances in technology and the costs of production
are positively affecting the implementation of such renewables. According to IRENA [1],
the price of different renewable energies has dropped significantly. This has promoted the
change to more sustainable resources such as wind and photovoltaic energies, which are
foreseen to reach 40% of the global energy in 2040 [2].

Solar energy can be obtained by taking advantage of solar heat and photovoltaic (PV)
technology. The latter directly transforms sunlight into electricity thanks to technology
based on the photovoltaic effect [3]. This effect is a property of certain materials such as
silicone that allow us to generate electricity when they are irradiated. It happens when
photons are incident on PV materials, where they collide with electrons, creating an electric
energy flow.

Nonetheless, its main downside is the volatility of the energy produced owing to
changes in climate. This drawback is a strong barrier for numerous electricity companies.
In large-scale PV energy farms, an erroneous forecasting system may lead to a significant
loss of benefits. However, an accurate forthcoming estimate within a short-time period can
result in optimal management of the energy so that it could be stored, sold or distributed [4].

Since the first PV cell was created in 1883 with 1% of efficiency [5], researchers have
been focusing on developing better panels by testing different materials in order to improve
such efficiency, and therefore, energy production. So far, the highest efficiency was achieved
in 2020 up to 44.5% [6].
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As mentioned before, energy production based on PV technologies is catching the
attention of researchers. Nowadays, there are many physical models that provide infor-
mation as to how environmental variables influence the energy generated by solar panels.
However, the nature of the problem, heavily dependent on the weather, makes these models
not as accurate as one may expect. Here is where the Machine Learning techniques come
into play to reduce the impact of the aforementioned issue.

The base model used by many researchers is known as the persistence model [7–9],
which assumes that the generated power within time-lapse t is equal to the previously
generated power in earlier d intervals. In other words, the energy produced during one day
at a certain time would be the same as the day before. The main advantage of this approach
is that they assume some climate stability over some time. Statistical models do not need
internal information to simulate the system. They are a data-driven approximation capable
of extracting relationships from the past to predict the future [10].

Proper data extraction and processing have shown to positively influence how the
results are obtained. Many authors have studied the correlation between the selection
of inputs and the accuracy of the model. One can find the work of Almeida et al., [11]
who concluded the best combination to predict the energy production of the following
day in a PV plant was to employ the previous 30 days. Other authors achieved promising
outcomes by applying classification methods as a function of climate conditions (sunny,
windy, cloudy) and thus implementing different models [12–15].

In this study, a complete methodology to predict energy production in a PV farm is
proposed. Data from a real scenario was employed, in particular, from the Scottish solar
farm Cononsyth. The main goal was to implement forecasting models that allow us to
estimate the forthcoming hour. To do so, an implementation and comparison of several
machine learning methods were carried out, from the simplest linear techniques, passing
through tree-based algorithms to the most complex neural networks.

The rest of the paper is structured as follows. Section 2 introduces the dataset utilised,
the machine learning techniques and the pre-processing stage carried out. Section 3
presents the results of the forecasting models. Lastly, Section 4 gathers the conclusions and
future work.

2. Materials and Methods
2.1. Dataset

The dataset employed to validate the proposed methodology was collected from a solar
farm located in Cononsyth, Scotland. This solar plant was built in October 2011 with 50 kWp
of solar PV modules and a Feed-in Tariff of 31.5 p/kWh. It generates around 45 MWh a
year with a gain of GBP 18,000/annum [16]. Although the Cononsyth Farm also handles
energy generation by wind-based technologies, this study will be focused only on solar
panels in order to test our models on historical information to predict electric production
without any external information. Provided the proposal is feasibile, incorporating new
data could enrich the forecasting process.

What motivates the selection of this data was the current scenario in the country. Due
to the enduring electricity distribution crisis, electricity costs have been gradually rising.
In addition to this, the current untaxed diesel costs make the goal of the price control law
difficult to reduce the cost of these operational processes. As a consequence, the growth
of solar energy in the UK along with the price difference between solar PV other more
contaminant resources [17] create a key scenario for providing predictive models so as to
support the generation of renewable energy.

The dataset originally contained seven CSV files regarding different photovoltaic
panels from 2011 to 2017 on an hourly basis and, therefore, the information to be managed
will be the panel production in Wh. In total, there are around 54,000 samples. Figure 1
illustrates the representation of the data. It can be seen from this figure that all the years
follow a similar trend, although each piece has certain particularities that will feature
each period.
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Figure 1. Representation of the whole dataset.

Since most of the models implemented cannot work with time variables, it was decided
to split this into four explanatory variables, i.e., year, month, day and hour. Similarly,
columns that gather information about past energy production were created. The number
of lags selected can be observed in Figure 2. Different values from 1 to 50 were tested
to check the error of one of the models, and the optimal number of previous values to
take into account were 3. As a consequence, the dataset will have three more columns for
t− 3, t− 2, t− 1.
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Figure 2. Selection of the number of lags.

In short, the dataset consists of 54,000 samples with eight variables, and this is the
information the models will have to adjust.

2.2. Data Analysis

The PV production indicates the power generated by the solar panels per hour. This
variable varies within the range of [0, 43122] kW before pre-processing of the data. The
max power reached was in 7 May 2017 with 43 kW. The next highest productions can be
seen in the next table (see Table 1).

Table 1. Intervals with the highest PV production.

Date PV Production

26 May 2015 12:00:00 42.8 kWh
7 May 2017 13:00:00 42.3 kWh
10 June 2015 13:00:00 42.2 kWh
9 May 2013 12:00:00 42.0 kWh

As an example, it can be said that the production of the highest seven days would be
equal to the average household monthly expenditure on lighting in Spain.

As can be seen from Figure 3a, most of the PV production is gathered within [0, 10, 000] Wh.
This is mainly because most of the time it presents null production as a consequence of
the sunlight absence. On the other hand, Figure 3b displays the data without taking into
consideration the nocturnal period and it can be appreciated how most of the observations,
75%, registered less than 150 kWh. In addition to this, it can be inferred that data do not



Energies 2022, 15, 8732 4 of 14

show a normal distribution. The following histogram (Figure 4) shows how the bulk of the
production is close to 0.
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The annual production does not have much variation from one year to another since
the climate is a clear seasonal component. In this way, energy production forecasting will
be very similar to previous years (see Figure 5).
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The monthly production is concentrated between May and August, as can be seen
in Figure 6. It is worthy of mention that in the summer of 2012, the energy production
suffered a notable decrease compared to the rest of the years.
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Figure 6. Monthly representation of the PV production.

It was also analyzed whether there is any significant difference when disaggregat-
ing the energy production over the days of the months and no differences were found.
Nonetheless, as expected, by doing the same but on an hourly basis, the hours with more
energy corresponded to the ones with more solar activity, and therefore higher irradiation,
which was observed between 10 a.m. and 2 p.m. (see Figure 7).
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Finally, it is interesting to study the correlation between variables. The more informa-
tion we have, the better to the chance to improve the prediction of our models. However,
when managing a sheer amount of data, some information could turn out to be irrelevant
or even noise. Thus, Figure 8 illustrates a strong correlation between the energy production
at time t and the preceding values, the closest one being the most correlated.
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The latter fact can be confirmed if the relevance of each variable is examined. To do
so, one of the tree-based models that will be detailed below may be very handy on this
occasion (see Table 2). It can be observed how t− 1 has the strongest importance, which
is the variable that represents the energy produced in the previous hour. Interestingly,
the time of day becomes more important, as the hour may lead us to know whether the
forthcoming hour will have production or not, showing a clear seasonality, as was depicted
in previous graphs.

Table 2. Relevance of each variable.

Variable Relevance

t − 1 0.860
Hour 0.065
t − 2 0.025
t − 3 0.022

Month 0.016
Day 0.015
Year 0.007

2.3. Methodology

To address this problem, the use of several machine learning algorithms that have
been employed in recent studies in this field [18–20] was proposed. This section is intended
to describe these methods in detail and some properties needed to solve the problem.
The following methods were implemented: Linear Regression (LR), k-Nearest Neighbour
(kNN), Decision Tree (DT), eXtreme Gradient Boosting (XGB), Light Gradient Boosting
(LGBM), Multi-Layer Perceptron (MLP), Elman Neural Network (ENN) and Long Short-
Term Memory neural network (LSTM).

2.3.1. Linear Regression

LR [21] is a statistical method whose aim is to represent the relationship between
an objective variable and the predictor variables by means of a linear equation. It can be
defined as a tuple of independent variables as follows:

yi = β0 + β1xi1 + · · · β jxij + εi (1)

where yi is the value of the estimation for the observation i, β j is the weight for each target
variable and ε is the difference between the observed value and the prediction.

Thus, with LR, the endeavours were focused on approximating the best β values
utilizing the samples from the dataset. The most-used method to do so is known as least
squares, which will be the one employed here, and it consists of minimizing the sum of the
offsets of points between the sample and the curve.

2.3.2. k-Nearest Neighbours

kNN is a non-parametric method; in other words, it does not presume any distribution
in the data. It estimates the value of a new sample through the closest points to it by
computing that proximity using a distance or similarity metric [22]. Once obtained, the k
closest points (or neighbours) and the target variable are calculated using the mean of these
two variables:

ŷ =
1
k ∑k

i=1 yi (2)

As one may imagine, the most relevant parameter in this method is k, i.e., the number
of observations that will influence the computation of the new element. After sorting these
values according to their distance, the first k values are chosen. Commonly, the popular
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distance in this algorithm is the Euclidean distance, although one may find some others
such as the Minkowski distance, which is a generalisation of the Euclidean distance:(

∑k
i=1|xi − yi|q

)1/q
(3)

where q is an integer that defines the order of the distance.

2.3.3. Decision Tree

The third method adopted is DT [23–25], which builds different regression models,
giving it a tree structure. The model splits the original feature space into diverse subsets
that become increasingly smaller. The expected goal is a tree with decision nodes. These
nodes divide the space into two subspaces with eventual leaf nodes. The latter represents
the last split of the data.

Originally, DT was oriented to classification problems, so in order to adapt them to a
regression problem, the CART algorithm to generate binary trees is employed, i.e., each
node splits into exactly two branches. When dealing with regression problems, DT utilises
a greedy algorithm to select the optimal local solution.

The function costs can be mathematically defined as follows:

J(a, la) =
ml
m

MSEl +
mr

m
MSEr (4)

where a is the attribute in question, la is the limit of such attribute, m is the number of
samples and MSE represents Mean Square Error. The subindexes l and r stand for left and
right margins, respectively.

2.3.4. eXtreme Gradient Boosting

XGB is an open access library that provides an efficient and effective implementation
of the gradient boosting algorithm that comes from a greedy function approximation of the
gradient [26]. The idea behind this technique is to adjust multiple weak prediction models
sequentially so that each model takes the results obtained by the previous one to eventually
generate a stronger model.

This goal is achieved thanks to the Gradient Descent algorithm. Formally, if it starts
with sample x0 and moves forward to a positive distance, α, the new position, x1, will be:

x1 = x0 − α∇ f (x0) (5)

One of the main issues with this technique is that it cannot be determined whether the
algorithm found a local or global minimum. Thus, α allows us to control the convergence
of the method. In the training stage, these parameters are iteratively adjusted so as to
minimize this error. To do so, the Mean Absolute Error or the Root Mean Square Error was
employed, and which will be defined later.

2.3.5. Light Gradient Boosting

In terms of functionality, LGBM is similar to XGB. LGBM [27] was developed by
Microsoft and is based on the Gradient Descent algorithm too. The main difference is the
way the «weak» models are modified in the subsequent iterations. LGBM adapts the trees
utilising a depth-first expansion; in other words, it changes the nodes in the same branch
first, as opposed to XGB, which creates it transversally by establishing a depth limit.

2.3.6. Multi-Layer Perceptron

MLP [28–30] is a supervised algorithm that learns the function f : Rm → Ro on the
training set, where m is the dimension of the input vector and o is the output variable. Given
feature vector X = {x1, x2, . . . , xm} and output Y = {y1, y2, . . . , yo}, MLP is capable of
learning a non-linear function to predict future values.
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The structure of MLP is divided into three layers, the input layer with as many nodes
(or neurons) as the input vector X. Each neuron in the input layer transforms these values
into a new weighted linear combination of values following the next equation:

hj =
m

∑
i=1

wixi (6)

where h is the hidden neuron and j and w is the weight associated to the input i. Finally,
each neuron applies an activation function to this combination to eventually transfer the
information of that neuron to the next layers.

2.3.7. Elman Neural Network

The second ANN evaluated is an improvement of MLP. MLP has certain limitations
for its design that can be solved by making some changes in its architecture. ENN is known
as a simple recurrent network, and it presents an improvement in the feedforward design
thanks to the incorporation of feedback among hidden layers.

An ENN is a net with three layers (input, hidden and output) to which a «context»
layer is added. These context (or memory) nodes are in charge of storing the previous
weights of the neurons, giving it a certain memory in time [18,31].

The reminding process is produced through this context layer, which is fed by the
hidden neurons. Mathematically, this process can be defined as follows:

ht = σ(Whxt + Uhht−1 + bh) (7)

where xt is the input vector, ht has the vector of the hidden layer, W and U are the matrices
of weights, σ is the activation function and bh is bias.

2.3.8. Long Short-Term Memory

Recurrent Neural Networks have an architecture that allows us to connect neurons
among diverse layers. This feature provides the net with new information from the
preceding activations. This information is constantly renewed in each iteration. In this way,
the importance of each iteration varies according to the number of steps. This may be a
problem if the information lasts for many time steps.

To solve this problem, LSTM was introduced. Instead of storing the historical informa-
tion from antiquity, LSTM uses neurons that allow the net to decide what to data save and
what to forget [20].

An LSTM neuron consists of a cell, input gate, output gate and a forget gate. The node
remembers values over time intervals. In summary, this model can be defined as follows:

lt = σ(WT
xl ·xt + WT

hl ·ht−1 + bl) (8)

where l can be the input, output, cell or the output gate, Wxi and Whi are the matrices of the
weights and b is the bias. To this, the update of the cell state ct should be added as follows:

ct = ft·ct−1 + it·c′t (9)

Here, ft is the forget gate, and it the input gate. Finally, the computation of the hidden
neurons ht with the output gate ot:

ht = ot·σ(ct) (10)

2.3.9. Metrics

After introducing all the techniques implemented in this study, the metrics employed
to evaluate and compare the predictions made must be presented. Although two of
them are quite similar, in the literature, one may find discussions done by any of them
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interchangeably. In this study, three metrics were selected so as to confirm the behaviour
and in the case of a tie or similarity in terms of performance, other metrics can be checked.

The first metric is the Mean Absolute Error (MAE) [32]:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (11)

The second metric is the Root Mean Square Error (RMSE) [32]:

RMSE =

√
∑(ŷ− y )2

2
(12)

Finally, the last metric is the Coefficient of determination R2 [33]:

R2 = 1− ∑ e2

∑(ŷ− y)2 (13)

where n is the number of observations, y is the actual value of the point, ŷ is the prediction
of the model and e stands for the residual.

2.3.10. Pre-processing

An important aspect of an adequate learning process is the pre-processing stage. Most
machine learning models suffer from this when not performing properly, most specifically,
those algorithms based on distances, e.g., kNN. Similarly, ANNs are sensitive to the input
scale, particularly when using certain activation functions such as the sigmoid function.

Scaling allows us to rearrange a variable’s domain within a specific range, usually,
[0, 1]. In this case, the MinMaxScaler was applied to the data, which is defined in the
following formula.

z =
x− xc

xd − xc
(14)

Being xc and xd the minimum and maximum values respectively.
Another key piece in this stage is the proper representation of the data. The main

problem with the time-related variables (hour, day, month) is that the values of such
variables do not represent their seasonal nature. As an example, the distance between
two observations whose months are 1 (January) and 12 (December) would be always 11,
although this is not necessarily true as there is only 1 month between them. The solution
found for this issue consists of increasing the dimensionality of each variable by means of
trigonometric functions. In this way, one may work with cyclical variables that represent
the information in a better way, as can be seen in Figure 9.
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It is not very common to find many studies that apply such a pre-processing tech-
nique, but they are quite effective in the end. In doing so, the final dataset will have
ten variables—six time variables, three past values of the photovoltaic production and
the current value.

3. Results

The first results pursued in this study were to find the best hyperparameter combina-
tion of for each model. Since each model has its particular features, in order to compare
their results, Table 3 was built. Here, P1 and P2 are two of the most tested parameters using
the grid search.

Table 3. Grid search results. Best results obtained and the combination of the paired parameters P1
and P2 for each model. Each hyperparameter stands for a particular feature of the model in question.
All rows of the same model are sorted by MAE.

Model P1 P2 MAE RMSE R2

LR 0 1.00 0.04600 0.07900 0.83800
0 0.95 0.04600 0.07900 0.83800
0 0.90 0.04600 0.07900 0.83800
0 0.85 0.04600 0.07900 0.83800

kNN 16 1 0.03338 0.07053 0.87680
17 1 0.03394 0.07055 0.87680
18 1 0.03401 0.07058 0.87670
20 1 0.03408 0.07057 0.87670
22 1 0.03414 0.07056 0.87670

DT 16 32 0.03367 0.07034 0.87750
8 32 0.03367 0.07034 0.87750
4 32 0.03367 0.07034 0.87750
32 16 0.03367 0.07034 0.87750
8 16 0.03367 0.07034 0.87750

LGBM 30 800 0.03089 0.06433 0.89750
40 600 0.03090 0.06432 0.89760
20 100 0.03103 0.06432 0.89760
20 800 0.03119 0.06433 0.89750
20 800 0.03125 0.06434 0.89750

XGB 900 6 0.03070 0.06420 0.89800
700 6 0.03070 0.06423 0.89780
700 7 0.03074 0.06421 0.89790
1000 6 0.03078 0.06427 0.89770
900 6 0.03089 0.06420 0.89800

MLP 60 80 0.03600 0.07173 0.87260
70 80 0.03620 0.07158 0.87320
50 60 0.03672 0.07166 0.87290
70 80 0.03718 0.07160 0.87310
30 60 0.03843 0.07085 0.87570

ENN 300 300 0.03400 0.07064 0.87000
100 100 0.03500 0.07148 0.87000
500 - 0.03800 0.07319 0.86000
100 - 0.04055 0.07541 0.85000
50 - 0.04057 0.07678 0.85000

LSTM 300 300 0.04048 0.07853 0.85000
100 100 0.04065 0.07875 0.85000
500 - 0.04194 0.08044 0.84000
100 - 0.04384 0.08056 0.84000
50 - 0.04401 0.08079 0.84000

The following lines describe all the hyperparameters studied. LR was tested using dif-
ferent values for its parameter alpha = [0, 0.05, 0.1, . . . , 1] and l1ratio = [0, 0.05, 0.1, . . . , 1].
The main hyperparameter of kNN is k, and the number of neighbours was set to [3, 4, . . . 100].
How the weights were influenced was also tested, and computed by [1, 0], which stands



Energies 2022, 15, 8732 11 of 14

for distance and uniform, respectively. In this table, DT shows the min_samples_split =
[ 2, 4, 8, 16, 32] and min_samples_lea f = [1, 2, 4, 8, 16, 32], although the criterion and
the max depth were also modified. The model developed by Microsoft, LGBM, was anal-
ysed under num_leaves = [10, 20, 30, 40, 50] and num_estimators = [100, 200, . . . , 1000].
This experiment mainly looked for the num_estimators = [100, 200, . . . , 1000] and
max_depth = [1, 2, . . . , 10] in the case of XGB. Finally, all the ANN-based models were
examined by combining different neurons within two layers, which are the columns shown
in the table. Other hyperparameters were also inspected, such as the activation function,
learning rate and alpha.

Presently, all the results obtained using a one-hour-ahead prediction are presented,
i.e., the prediction of the total amount of photovoltaic energy generated for the next hour
by means of the previous three hours as well as the time variables. Note that the latter, the
lag selection, was made in the previous section, specifically in Figure 2 while the dataset
was being prepared. As a reminder of those results, one has to take into consideration that
this value was obtained by testing past values from 1 to 50 and the best error was obtained
with the three past hours.

The period used to test the models was the year prior, i.e., 2017. Table 4 gathers the
results obtained and sorted by MAE. On the whole, these metrics confirm the expected
outcomes. Bear in mind that the data were previously scaled within the range [0, 1], so
these metrics will be as well.

Table 4. Summary of the results obtained, sorted by MAE with the best metric in bold.

Model MAE RMSE R2

XGB 0.0306 0.0628 0.8945
LGBM 0.0308 0.0629 0.8941

DT 0.0335 0.0689 0.8731
kNN 0.0343 0.0697 0.8701
LSTM 0.0359 0.0717 0.8623
ENN 0.0363 0.0709 0.8656
MLP 0.0385 0.0704 0.8672
LR 0.0459 0.0782 0.8362

It is interesting to see how ANN models provided evenly distributed predictions
among them and the position they received, since they are also sorted in terms of complexity,
i.e., LSTM first, which is the most complex model, then ENN and finally MLP. This fact
confirms how the historical information latent in the data helps them to enhance their
predictions. They were followed by a slightly worse prediction by LR, which is the most
traditional approach implemented. In contrast, XGB was ranked in the first position
followed by its counterpart LGBM. This gives us the hint that this problem benefits from
boosting solutions.

Finally, some graphs will be depicted to show the adjustment of the models. Given the
sheer number of observations in the test, an illustrative example of the predictions is shown.
It can be observed how the models adjust properly to the test data, although in most cases,
the peak demand during the hours of maximum solar irradiance is underestimated. All
of them follow a similar trend in both stable and unsteady days, being the latter harder
to predict.

Another remarkable fact observable in this figure is that the first day presents an
uncommon behaviour compared to the rest of the days. This is because that day was
cloudy and there was not much irradiance. Surprisingly and logically, all the models start
overestimating the production. However, the information of the previous three hours
manages to correct this overestimation, miscalculating only the first hours.

4. Conclusions and Future Work

This section exposes the conclusions reached in the course of this research work, along
with a series of improvements and future work.
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The prediction of power demand plays an essential role in photovoltaic production
plants. The enhancement of such estimates is an issue that has recently led to increased
importance in the search for more accurate and reliable predictions. In this research, several
forecasting machine learning techniques most used in the literature were implemented
with a short-term horizon prediction, specifically, on a one-hour basis. The most accurate
model was the tree-based XGB which obtained the lowest RMSE and MAE. On the whole,
all the implemented models provided good results while predicting the next hour thanks
to the extra variables incorporated.

Nevertheless, the main issue of this proposal is the lack of meteorological information.
Some information about the weather might improve the estimation of the predictors. An
instance of this can be seen in Figure 10, if the model would have known that that day was
cloudy, it may have varied the estimate in that period. Therefore, the incorporation of this
kind of information is proposed so as to validate this hypothesis.
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As a second improvement, it was proposed to extend the forecasting horizon for at
least 24 h. It may be attained by increasing the amount historical values the models have to
adjust, i.e., increasing the number of lags as considered in this research. Moreover, it can
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be of great interest to incorporate external information such as weather variables or other
more specific ones such as the sort of radiation the panels receive.
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Abbreviations

DT Decision Tree
ENN Elman Neural Network
kNN k-Nearest Neighbour
LGBM Light Gradient Boosting Machine
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LSTM Long Short-Term Memory
MAE Mean Absolute Error
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