Mostrar el registro sencillo del ítem

dc.contributor.authorPedraz Valdunciel, Carlos
dc.contributor.authorGiannoukakos, Stavros Panagiotis 
dc.contributor.authorFernández Hilario, Alberto Luis 
dc.contributor.authorHackenberg, Michael 
dc.date.accessioned2022-11-21T13:40:10Z
dc.date.available2022-11-21T13:40:10Z
dc.date.issued2022-09-24
dc.identifier.citationPedraz-Valdunciel, C... [et al.]. Multiplex Analysis of CircRNAs from Plasma Extracellular Vesicle-Enriched Samples for the Detection of Early-Stage Non-Small Cell Lung Cancer. Pharmaceutics 2022, 14, 2034. [https://doi.org/10.3390/pharmaceutics14102034]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/78070
dc.description.abstractBackground: The analysis of liquid biopsies brings new opportunities in the precision oncology field. Under this context, extracellular vesicle circular RNAs (EV-circRNAs) have gained interest as biomarkers for lung cancer (LC) detection. However, standardized and robust protocols need to be developed to boost their potential in the clinical setting. Although nCounter has been used for the analysis of other liquid biopsy substrates and biomarkers, it has never been employed for EV-circRNA analysis of LC patients. Methods: EVs were isolated from early-stage LC patients (n = 36) and controls (n = 30). Different volumes of plasma, together with different number of preamplification cycles, were tested to reach the best nCounter outcome. Differential expression analysis of circRNAs was performed, along with the testing of different machine learning (ML) methods for the development of a prognostic signature for LC. Results: A combination of 500 L of plasma input with 10 cycles of pre-amplification was selected for the rest of the study. Eight circRNAs were found upregulated in LC. Further ML analysis selected a 10-circRNA signature able to discriminate LC from controls with AUC ROC of 0.86. Conclusions: This study validates the use of the nCounter platform for multiplexed EV-circRNA expression studies in LC patient samples, allowing the development of prognostic signatures.es_ES
dc.description.sponsorshipEuropean Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 765492es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcircRNAses_ES
dc.subjectExtracellular vesicleses_ES
dc.subjectnCounteres_ES
dc.subjectLung canceres_ES
dc.subjectNSCLCes_ES
dc.subjectLiquid biopsieses_ES
dc.titleMultiplex Analysis of CircRNAs from Plasma Extracellular Vesicle-Enriched Samples for the Detection of Early-Stage Non-Small Cell Lung Canceres_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/765492es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/pharmaceutics14102034
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional