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Abstract: Background: The analysis of liquid biopsies brings new opportunities in the precision
oncology field. Under this context, extracellular vesicle circular RNAs (EV-circRNAs) have gained
interest as biomarkers for lung cancer (LC) detection. However, standardized and robust protocols
need to be developed to boost their potential in the clinical setting. Although nCounter has been
used for the analysis of other liquid biopsy substrates and biomarkers, it has never been employed
for EV-circRNA analysis of LC patients. Methods: EVs were isolated from early-stage LC patients
(n = 36) and controls (n = 30). Different volumes of plasma, together with different number of pre-
amplification cycles, were tested to reach the best nCounter outcome. Differential expression analysis
of circRNAs was performed, along with the testing of different machine learning (ML) methods for
the development of a prognostic signature for LC. Results: A combination of 500 µL of plasma input
with 10 cycles of pre-amplification was selected for the rest of the study. Eight circRNAs were found
upregulated in LC. Further ML analysis selected a 10-circRNA signature able to discriminate LC from
controls with AUC ROC of 0.86. Conclusions: This study validates the use of the nCounter platform
for multiplexed EV-circRNA expression studies in LC patient samples, allowing the development of
prognostic signatures.

Keywords: circRNAs; extracellular vesicles; nCounter; lung cancer; NSCLC; liquid biopsies

1. Introduction

With 350 deaths per day projected for 2022, lung cancer stands as the main cause of
cancer-related mortality, leading the second highest incidence in the United States and
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Europe [1,2]. Treatments have proved to be more effective at the early stage of the disease,
when lung cancer patients benefit from a significantly improved overall survival (OS) [3].
However, most cases are diagnosed at an advanced stage, with a 5-year survival rate
dropping to only 5% in stage IV.

In order to achieve early detection, many challenges need to first be faced. Classical
biopsy techniques for sampling and profiling of suspicious pulmonary nodules often
involve invasive procedures. Limitations of such practices include restricted access to
the nodules, which regularly compromise the quality and quantity of extracted biopsy
specimens. Heterogeneity of resected samples also hampers the use of these methods,
especially for tumor identification [4].

Liquid biopsies offer a minimally invasive procedure for sampling, providing a practi-
cal tool for continuous monitoring of lung cancer patients [5], being also actively investi-
gated for early detection [6]. Despite the slow progression on the development of liquid
biopsies in this area, many possible biomarkers have been proposed in the last few years,
including circulating tumor DNA (ctDNA), cell-free RNA (cfRNA), circulating tumor cells
(CTCs), proteins, extracellular vesicles (EVs) and tumor educated platelets (TEPs).

Lung cancer elicits massive changes in RNA metabolism, reflecting both in the tu-
mor transcriptome and in the circulating EV and TEP cargo. EVs contain different RNA
molecules, including mRNA and non-coding RNAs such as miRNA or circular RNAs
(circRNAs) [7,8]. The circRNA transcripts are generated by post-transcriptional circular-
ization of the 5′ and 3’ends in an alternative process called back-splicing. Their circular
structure makes most of them resistant to exonucleases and, therefore, robustly stable RNA
molecules, compared to the canonical (linear) mRNA. CircRNAs seem to play an important
role in human homeostasis [9,10]. Moreover, it has been reported that aberrant expression
of certain circRNAs can promote cancer development and progression [11]. Additionally,
some circRNAs have been investigated as liquid biopsy biomarkers for the early detection
of lung cancer and other solid tumors [12,13]. However, the lack of consensus on a robust
and standardized protocol for circRNA quantification is holding back the development of
clinically applicable assays.

RT-qPCR, microarrays and RNAseq are the three methods most commonly used
in circRNA research. However, the RT-qPCR does not allow high-throughput analysis;
microarrays have a limited dynamic range of RNA detection; and RNAseq is associated
with high cost, long time-consuming protocols, and high grade of complexity when it
comes to data analysis.

An alternative technique for multiplex analysis of circRNA is nCounter, which pro-
vides a cost-effective automated solution for analysis of more than 800 targets with minimal
hands-on time, providing highly reproducible data in less than 48 h. nCounter is based on
the detection of RNA of interest using target-specific probe pairs. Each pair comprises of a
reporter probe with a unique color combination at the 5’- end, allowing specific recognition
of the gene of interest; and a capture probe carrying a molecule of biotin, which provides
a molecular grip to the nCounter cartridge, allowing downstream digital detection [14].
The expression of a particular gene is then calculated by counting the number of times a
specific color-coded probe is detected. This technology has been embraced in translational
research, including the development and validation of liquid biopsies, due to its capability
of working with a low quantity of highly degraded samples [15,16]. Recent studies reported
the use of nCounter for the study of several categories of circulating biomarkers [17–21],
including EV-derived DNA [22], miRNA [23,24], mRNA [25] and circRNA [26]. However,
nCounter analysis of EV-circRNAs has not been investigated for early detection of lung
cancer. Here, we report the development of a protocol for EV enrichment from plasma
followed by RNA purification and circRNA analysis by nCounter.

Then, we analyzed liquid biopsies from non-cancer donors and early-stage non-
small cell lung cancer (NSCLC) patients and applied machine learning (ML) to develop a
prognostic signature.
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2. Materials and Methods
2.1. Patient Samples

The study was carried out in accordance with the principles of the Declaration of
Helsinki, under an approved protocol of the institutional review board of Quirón Hos-
pitals. We obtained and documented written informed consent from all the patients. A
total of 36 samples from early-stage NSCLC (stages IA to IIIA) were selected from our
institution, along with 30 samples from non-cancer controls (Table 1). Clinical informa-
tion from patients and controls included age, gender, smoking status, tumor histology
and stage, when applicable. All samples were de-identified before further processing for
confidentiality purposes.

Table 1. Clinicopathologic characteristics of enrolled patients (n = 66).

Clinicopathological
Characteristics

NSCLC Patients
(n = 36)

Non-Cancer Controls
(n = 30)

Gender—no. (%)
Male 18 (50.0) 13 (43.3)

Female 18 (50.0) 17 (56.7)
Age—yr.
Median 71.5 38
Range 32–91 23–57

Histological type
Adenocarcinoma 27 (75.0) -

Squamous carcinoma 4 (11.1) -
Not information 5 (13.9) -

Smoking status—no. (%)
Former- or current smoker 20 (55.5) 11 (36.6)

Never smoker 13 (36.2) 17 (56.7)
Not information 3 (8.3) 2 (6.7)

Tumor stage—no. (%)
I 19 (52.8) -
II 2 (5.5) -

IIIA 15 (41.7) -

2.2. Plasma Processing

Around 10 mL of whole blood was collected from the participants enrolled in the
study using sterile EDTA Vacutainer tubes (BD, Plymouth, UK) and processed within the
next 2 h. Blood samples were centrifuged twice at 2000× g at room temperature (RT) in
a Rotina 380 R centrifuge (Hettich, Tuttlingen, Germany) for 10 min to separate plasma
from red/white blood cells, platelets, and cell debris. Aliquoted plasma samples were then
stored at −80 ◦C until downstream processing.

2.3. Enrichment of EVs

EVs were isolated from plasma using differential ultracentrifugation (UC) as described
previously [27] or the miRCURY Exosome Serum/Plasma Kit (Qiagen, Hilden, Germany).

In the case of UC, 500 µL plasma samples were transferred into 15 mL sterile high-
speed centrifuge tubes (VWR-Avantor, Philadelphia, PA, USA), filled up with sterile
1× phosphate-buffered saline (PBS) and centrifuged twice at 10,000× g for 30 min at
4 ◦C in a Sorvall RC 6 Plus centrifuge (Thermo Fisher Scientific, Waltham, MA, USA).
Supernatants were then transferred into UC tubes (Beckman Coulter, Brea, CA, USA), equi-
librated with sterile 1× PBS, and spun twice at 70,000× g for 1 h at 4 ◦C in the Sorvall WX
Ultra 100 centrifuge (Thermo Fisher Scientific). The EV enriched pellets were resuspended
in 100 µL sterile PBS and stored at −80 ◦C until used. EV enrichment with the miRCURY
Kit was performed as described [25]. Debris was cleared from 500 µL plasma samples with
thrombin and subsequent centrifugation at 10,000× g for 5 min at RT. Samples were then
incubated with Precipitation Buffer overnight at 4 ◦C and centrifuged twice (500× g, 5 min
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at RT). Supernatants were discarded, EV enriched pellets were resuspended in 270 µL of
Resuspension Buffer and stored at −80 ◦C until used.

2.4. Transmission Electron Microscopy (TEM)

Visualization of EV samples was performed by the TEM service of the Universitat
Autónoma de Barcelona (UAB). A volume of 3.9 µL of EV-enriched sample was blotted
onto a Holey Carbon Film Supported Nickel Grid (Merck, Darmstadt, Germany) previously
glow-discharged in a PELCO easiGlow glow cleaning system (Ted Pella Inc, Redding, CA,
USA). Next, the grid containing the sample was plunged into a Leica EM GP cryo-work
station (Leica, Wetzlar, Germany) comprising a liquid ethane bath cooled to −180 ◦C, and
subsequently transferred and visualized in a JEOL 2011 TEM (Jeol Ltd., Tokyo, Japan) oper-
ating at 200 kV. Samples were kept at −180 ◦C during the observation and captures were
obtained with a Gatan Model 895 UltraScan 4000 4k × 4k CCD camera (Gatan Inc, Pleasan-
ton, CA, USA). Image processing was performed using ImageJ software (version 1.8.0,
National Institutes of Health, Bethesda, MD, USA).

2.5. Nano-Flow Cytometry Measurements

The volume of EV samples was brought to 500 µL with sterile PBS. Size-exclusion
chromatography (SEC) columns (qEVoriginal/35 nm, Izon Science, Oxford, UK) were
equilibrated with 20–30 mL of sterile PBS and eluted using the same buffer. Collection
started immediately after loading the sample into the column, according to manufacturer
instructions. Eluted EV-enriched samples were directly analyzed with the nanoFCM
(NanoFCM Ltd., Nottingham, UK), a nanoparticle flow cytometer. Instrument calibration
with standard beads enabled accurate measurements of both size and concentration of
40–200 nm particles through the detection of their side scatter [28].

2.6. RNA Isolation and DNase Treatment

EV-enriched samples were treated with 4 µg/mL of RNase A (Sigma-Aldrich, Burling-
ton, MA, USA) for 1 h at 37 ◦C, to eliminate any non-vesicular RNA. TRI Reagent (MRC,
Cincinnati, OH, USA) was added to a final volume of 1 mL and incubated at RT for 20 min.
Then, 200 µL of a Chloroform and Isoamyl Alcohol dilution (24:1) (Panreac Química
SLU, Barcelona, Spain) were added, followed by vigorous shaking and centrifugation at
12,000× g for 15 min at 4 ◦C. Upper fraction was collected, and RNA was precipitated by
adding 2.5 µL of glycogen (Merck) and 500 µL 2-propanol (Merck), followed by incubation
at RT for 10 min and further centrifugation at 12,000× g for 10 min at 4 ◦C. RNA pellet
was then washed with 75% ethanol, dried at 95 ◦C for 3 min and resuspended in 12 µL of
nuclease-free water.

The DNA-free DNA Removal Kit (Thermo Fisher Scientific) was used to eliminate
any DNA remaining in the samples. Following the manufacturer’s protocol, 0.75 µL of
DNase buffer and 1 µL enzyme were added to 7.5 µL RNA sample and incubated at 37 ◦C
for 30 min. A volume of 0.75 µL of DNase inactivation reagent was then added to the
reaction, incubated for 2 min at RT and centrifuged for 1.5 min at 10,000× g and RT. The
supernatant containing EV-RNA was then transferred to a fresh tube and stored at −80 ◦C
until further use.

2.7. RT-qPCR and Sanger Sequencing Analysis

RT-qPCR and Sanger sequencing of circRNA junction sites were performed as pre-
viously described [29]. Divergent primers and probe sets were designed using Primer
Express 3.0 Software (version 3.0.1, Applied Biosystems, Waltham, MA, USA) with the
probes spanning the circRNA junction site (Table 2). Five microliters of EV-RNA was con-
verted into cDNA using the M-MLV reverse transcriptase enzyme and random hexamers
(both from Invitrogen, Waltham, MA, USA). A 1:3 dilution of cDNA was performed, and
2.5 µL were added to the Taqman Universal Master Mix (Applied Biosystems) in a 12.5 µL
reaction containing a specific pair of primers and probe for each circRNA. Three replicas
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of each sample were run for the quantification of the expression of each assessed circular
transcript. Quantification of gene expression was performed using the QuantStudioTM 6
Flex System (Applied Biosystems) and the comparative Ct method.

Table 2. Primer and probe design for circRNA validation by RT-qPCR.

CircRNA Primers and Probes Sequence

circHIPK3
Forward 5′CGGCCAGTCATGTATCAAAGAC 3′

Reverse 5′AAAGGCACTTGACTGAGTTTGATAAA 3′

Probe FAM 5′AATCTCGGTACTACAGGTATG 3′ MGB

circZCCHC6
Forward 5′AGATGTTGTCGAATTTGTGGAAAA 3′

Reverse 5′TCTTCTACCATTGATAAAAGCCTTCAT 3′

Probe FAM 5′GAGGAGAAATGACAAATT 3′ MGB

For Sanger sequencing, 10 µL of each PCR product was subjected to electrophoresis
in a 2× agarose gel (100 V, 30 min) and visualized under UV light (E-Gel™ Safe Imager™
Real-Time Transilluminator, Invitrogen) after electrophoresis (E-Gel™ iBase™ Power Sys-
tem, Invitrogen). Five microliters of each cDNA sample were purified using the PCR
ExoSAP-IT Product Clean up Reagent (Applied Biosystems). Sequencing PCRs were set
up using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), forward
primer, cDNA and water in a final volume of 20 µL and performed using a Verity 96-well
thermal cycler (Applied Biosystems). After sequencing amplification, samples were loaded
into a 96-well plate and subjected to Sanger sequencing using the 3130 Genetic Analyzer
(Applied Biosystems).

2.8. nCounter Processing

The nCounter Low RNA Input Amplification Kit (NanoString Technologies, Seattle,
WA, USA) was used to retrotranscribe and pre-amplify 4 µL of EV-derived RNA in a
Verity thermal cycler (Applied Biosystems) following NanoString’s guidelines. Briefly,
samples were denatured at 95 ◦C for 10 min and hybridized for 18 h at 67 ◦C. Our custom-
made nCounter panel (including 78 circRNAs, 6 linear reference genes and 4 mRNAs [30]
was used to analyze EV-derived pre-amplified cDNA according to the manufacturer’s
instructions. RCC files containing data outputted by the NanoString nCounter Flex System
(NanoString Technologies) from each run were exported to the nSolver Analysis Software
(Version 4.0.70, NanoString Technologies).

2.9. Differential Expression Analysis

Raw count nCounter values were exported to Microsoft Excel (Version 16.40, Microsoft,
Redmond, WA, USA) using nSolver Analysis Software. The background was calculated for
each sample as (geo)mean ± 2SD of the negative probe counts (NCs) Raw counts lower
than the background were automatically excluded from further analysis. The raw circRNA
counts were normalized using the total number of counts of the sample and multiplied
by 10,000. Differential expression analysis was performed comparing the means of the
normalized counts for each circRNA in the early-stage NSCLC vs. non-cancer controls.
The circRNAs with a fold change >1 and p-value < 0.05 were considered as differentially
expressed (DE).

2.10. Data Pre-Processing and Normalization for Signature Development

Raw RCC-formatted data files were exported from the nSolver Analysis Software
(NanoString Technologies). R (Version 4.0.3, R Core Team and the R Foundation for
Statistical Computing, Vienna, Austria) and R studio (Version 2021.09.0, RStudio PBC,
Boston, MA, USA) were used for pre-processing and normalization analysis of the imported
files. Initial evaluation of the quality and integrity of the RCC data was performed using the
NanoStringQCPro (Version 1.22.0) package. During this process, we looked for potential
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outliers based on the performance of standard control metrics provided by NanoString,
such as Imaging, Binding Density, Positive Control Linearity, and Limit of Detection.
After this first pre-analytical step, samples were subjected to supplementary exploratory
examination, including Principal Component Analysis (PCA) and interquartile range
(1.5 IQR rule) analysis. Samples found as outliers by both methods were then excluded
from downstream analyses.

NCs were employed to exclude lowly expressed circRNAs with excessive background
noise. The arithmetic mean of the NC ± 2SD was subtracted from each endogenous
circRNA for each sample. Any transcript scoring a value below 0 in more than 75% of
the analyzed samples was then excluded from further analysis. PCA plot was used to
re-assess the data after the aforementioned filtering step. Technical variability correction
and normalization were performed using the RUVSeq/RUVg function (Version 1.24.0) and
DESeq2 (Version 1.30.1) packages (RUVseq-DESeq2). First, the RUVg function was used to
estimate the unwanted variation among samples based on the DE genes. DESeq2 and edgeR
(Version 3.32.1) performed a first pass DE analysis and the intersected least significant
genes (with adjusted p-value above 0.1) were used as “in silico empirical” negative controls.
DESeq2 was then utilized with default parameters along with the RUV factors to perform
the normalization of the raw filtered data. The normalization performance was assessed
using the standard relative log expression (RLE) plot.

2.11. Machine Learning (ML) for Signature Development

The Recursive Feature Elimination (RFE) algorithm along with leave-one-out cross-
validation (LOOCV) and the random forest (RF) classifier were used to perform feature
selection on the normalized data previously generated by RUVseq-DESeq2. The optimal
number of features was automatically selected by keeping only those yielding best per-
formance after cross-validation. These final features were to constitute the prognostic
signature. To test the predictive power of the selected signature, extra trees classifier (ETC),
k-nearest neighbor (KNN) and RF models were built using default parameters. The 5-fold
cross validation (5-CV) algorithm was applied for this purpose. During this process, the
dataset was randomly split into k-folds (k = 5), being 4/5 of the data used to train the
model, while the remaining 1/5 was used to test its behavior. The classifier showing the
highest area under the ROC curve (AUC ROC) value was selected as the final model. Sig-
nature scores for each sample were obtained from the final model. A confidence threshold
of 0.5 was considered for the calculation of the positive and negative predictive values
(PPV–NPV). Additional statistical indicators such as accuracy, sensitivity, specificity, and
Cohen’s κ were also calculated.

2.12. Univariant and Multivariant Analyses

Association between clinical characteristics and ML-generated signature was assessed
with a univariate Cox proportional-hazard regression model. Odds ratios, with a Confi-
dence Interval (CI) of 95% was calculated using the MedCal Statistical Software (MedCalc
Software Ltd. Odds ratio calculator. https://www.medcalc.org/calc/odds_ratio.php.
Accessed last on 5 September 2022). Multivariant analysis using logistic regression was
performed using SAS software (v9.4, SAS Institute, Cary, NC, USA). Significance was set at
p < 0.05 for all statistical tests.

3. Results
3.1. Enrichment of Plasma EVs and Workflow Development for nCounter CircRNA Analysis

Two replicated 500 µL plasma samples from an early-stage NSCLC patient and a non-
cancer control were submitted to EV enrichment by ultracentrifugation (UC) or using the
miRCURY Exosome Serum/Plasma kit. Enriched EVs were characterized by transmission
electron microscopy (TEM) and nanoparticle flow cytometry via nanoFCM. TEM images
revealed different clusters of diverse-sized EVs (30 to 300 nm, all within the reported EV
size range [31–33]) in all samples regardless of the enrichment method used (Figure 1a).

https://www.medcalc.org/calc/odds_ratio.php
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Samples extracted using the miRCURY kit showed a higher proportion of vesicles with
an exosome-like size range (30–100 nm) by TEM, compared to the more heterogeneous
UC samples (Figure 1a). NanoFCM analysis revealed a higher concentration of 40–100 nm
particles in samples enriched using the miRCURY kit (Figure 1b). In addition, nanoFCM
indicated a higher number of particles/mL in the NSCLC patient sample when compared
to the control, both in the UC and miRCURY preparations (Figure 1b).
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Figure 1. Characterization of extracellular vesicles (EVs) enriched either by differential ultracentrifu-
gation (UC) or precipitation using the miRCURY Exosome Serum/Plasma kit. (a) Observation of EV
samples on transmission electron microscopy (TEM). Yellow arrows point out EVs of different sizes.
Scale bars indicate 200 nm.; (b) Nanoflow cytometry (nanoFCM) profiles of EV samples showing size
and concentration of 40–200 nm particles.

Next, different volumes of plasma (500 µL, 1000 µL and 1500 µL) from a NSCLC patient
were tested in duplicates to assess the effect of initial volumes on downstream circRNA
analysis by nCounter using the custom panel we previously developed [30]. Since RNA
concentration from EV enriched samples has been demonstrated to be insufficient for direct
nCounter analysis [25], pre-amplification steps of 14 and 20 cycles were tested. The utmost
total number of counts was achieved using an input of 500 µL both with 14 and 20 cycles
(14,151 ± 1864 and 686,525 ± 345,655, respectively; Figure 2a). Consequently, 500 µL of
plasma was also the volume allowing the detection of more circRNAs (n = 27.5 ± 4.95 and
33± 7.07 for 14 and 20 cycles, respectively; Figure 2b), even if only those with a score above
10 counts after background removal were selected (Table S1, Figure S1).

Different amplification cycles (10, 12 and 14) were subsequently tested in a 500 µL
plasma sample. The highest number of raw counts was obtained with 14 cycles (Figure 3a).
Regarding the number of circRNAs, 10 and 12 cycles yielded similar results (n = 51.5 ± 9.19
and 52.5 ± 7.78 respectively). More circRNAs were detected at 14 cycles (n = 59 ± 16.97)
with a high variability between replicates (Figure 3b, Table S2). In view of these results,
we selected for EV-circRNA analysis a protocol that included 500 µL of plasma input, EV
enrichment with the miRCURY kit, extravesicular RNA elimination with RNase A, EV lysis
and RNA extraction with TRI reagent, retrotranscription and nCounter analysis with a
10-cycle preamplification step (Figure 4).
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amplification cycles (10, 12 and 14) on (a) the total number of raw counts and (b) total number
of circRNAs detected. Error bars indicate standard deviation; (c) Correlation of the two technical
nCounter duplicates subjected to 10 cycles of pre-amplification. Pearson’s correlation coefficient
is indicated. (d) Correlation of each of the technical duplicates from the same nCounter run with
the results obtained in an independent nCounter assay of the same sample. Pearson’s correlation
coefficient is indicated.

The repeatability of the protocol was first tested by submitting to nCounter duplicates
of a preamplified plasma sample. A strong correlation between the normalized counts was
found between the duplicates, represented by a Pearson’s r of 0.98, p < 0.0001 (Figure 3c).
When the same plasma sample was re-purified and re-analyzed, nCounter results also
showed a strong correlation with the initial duplicates (Pearson’s r = 0.90–0.91; p < 0.0001)
(Figure 3d).
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before proceeding with manual RNA extraction with TRI reagent. RNA samples were treated with
DNase to eliminate any trace of genomic DNA, followed by retro-transcription and a pre-amplification
step of 10 cycles. Finally, samples were hybridized overnight before nCounter processing.

3.2. CircRNA Expression in Plasma EV Samples

Plasma from 66 individuals, 36 early-stage NSCLC patients and 30 non-cancer donors,
were analyzed using the protocol previously described in Section 3.1 (Figure 4). An average
of 40 ± 14 EV-circRNAs per sample were detected in controls vs. 47 ± 9 in the NSCLC
cohort. This difference was found to not be significant by the Mann–Whitney U test
(Figure 5a). Among the 78 circRNAs included in the panel, 70 were detected in at least one
NSCLC sample and 68 in at least one non-cancer control. A total of 66 EV-circRNAs were
shared by both cohorts, while four EV-circRNAs were exclusive to NSCLC patients and
two to non-cancer donors (Figure 5b, Table S3).

DE analysis revealed eight circRNAs significantly upregulated in EV-enriched samples
from NSCLC patients vs. controls; namely circular Erythrocyte Membrane protein Band
4.1 Like 2 (circEPB41L2), circular Core 1 Synthase, Glycoprotein-N-Acetylgalactosamine
-3-Beta-Galactosyltransferase 1 (circC1GALT1), circular Zinc Finger RNA Binding Protein
(circZFR), circular Ubiquitin Specific Peptidase 3 (circUSP3), circular Zinc Finger CCHC
Domain-Containing Protein 6 (circZCCHC6), circular Cyclin B1 (circCCNB1), circular
DENN Domain Containing 1B (circDENN1B) and circular Homeodomain Interacting
Protein Kinase 3 (circHIPK3) (Figure 5c). Of them, only circZFR and circC1GALT1 showed
<10 counts in each cohort (Table S4). To validate these results, we tested the expression
circZCCHC6 and circHIPK3 by RT-qPCR. Divergent primers and probes spanning the
junction sites were designed for the specific amplification of these two circular transcripts
(Table 2) in samples previously assessed by nCounter with sufficient remaining material.
Gel electrophoresis of the RT-qPCR products revealed bands matching the size of expected
amplicons and subsequent Sanger sequencing confirmed the expected junction sites in the
circRNAs (Figure 6a,b). Among the six samples analyzed by RT-qPCR, four and six samples
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produced satisfactory results for circZCCHC6 and circHIPK3 respectively. A trend between
nCounter counts and RT-qPCR ∆∆Cts was observed for both circRNAs (Figure 6c–d), with
circZCCHC6 showing a strong correlation (Pearson’s r = 0.99; p = 0.0076) (Figure 6c).

Pharmaceutics 2022, 14, x  10 of 19 
 

 

 
Figure 5. EV-circRNA detection and differential expression analysis. (a) Number of circRNAs de-
tected in extracellular vesicle (EV) enriched samples from cancer patients and non-cancer controls 
using our custom circRNA nCounter panel, which targets 78 circRNA (Mann–Whitney U test, p = 
0.3807); (b) Venn diagram displaying circRNAs identified in early-stage NSCLC and non-cancer 
controls, featuring those shared by both cohorts; (c) Differential expression analysis of log2-normal-
ized counts between the early-stage NSCLC and control EV samples. circEPB41L2, circC1GALT1, 
circZFR, circUSP3, circZCCHC6, circHIPK3 and circCCNB1 were found upregulated in NSCLC 
samples. 

DE analysis revealed eight circRNAs significantly upregulated in EV-enriched sam-
ples from NSCLC patients vs. controls; namely circular Erythrocyte Membrane protein 
Band 4.1 Like 2 (circEPB41L2), circular Core 1 Synthase, Glycoprotein-N-Acetylgalactos-
amine -3-Beta-Galactosyltransferase 1 (circC1GALT1), circular Zinc Finger RNA Binding 
Protein (circZFR), circular Ubiquitin Specific Peptidase 3 (circUSP3), circular Zinc Finger 
CCHC Domain-Containing Protein 6 (circZCCHC6), circular Cyclin B1 (circCCNB1), cir-
cular DENN Domain Containing 1B (circDENN1B) and circular Homeodomain Interact-
ing Protein Kinase 3 (circHIPK3) (Figure 5c). Of them, only circZFR and circC1GALT1 
showed <10 counts in each cohort (Table S4). To validate these results, we tested the ex-
pression circZCCHC6 and circHIPK3 by RT-qPCR. Divergent primers and probes span-
ning the junction sites were designed for the specific amplification of these two circular 
transcripts (Table 2) in samples previously assessed by nCounter with sufficient remain-
ing material. Gel electrophoresis of the RT-qPCR products revealed bands matching the 
size of expected amplicons and subsequent Sanger sequencing confirmed the expected 
junction sites in the circRNAs (Figure 6a,b). Among the six samples analyzed by RT-qPCR, 
four and six samples produced satisfactory results for circZCCHC6 and circHIPK3 respec-
tively. A trend between nCounter counts and RT-qPCR ∆∆Cts was observed for both 
circRNAs (Figure 6c–d), with circZCCHC6 showing a strong correlation (Pearson’s r = 
0.99; p = 0.0076) (Figure 6c). 

(a) (b) (c)

Figure 5. EV-circRNA detection and differential expression analysis. (a) Number of circRNAs
detected in extracellular vesicle (EV) enriched samples from cancer patients and non-cancer con-
trols using our custom circRNA nCounter panel, which targets 78 circRNA (Mann–Whitney U
test, p = 0.3807); (b) Venn diagram displaying circRNAs identified in early-stage NSCLC and non-
cancer controls, featuring those shared by both cohorts; (c) Differential expression analysis of
log2-normalized counts between the early-stage NSCLC and control EV samples. circEPB41L2,
circC1GALT1, circZFR, circUSP3, circZCCHC6, circHIPK3 and circCCNB1 were found upregulated
in NSCLC samples.
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Figure 6. Validation of nCounter results by RT-qPCR and further Sanger sequencing. (a) Electrophore-
sis gel of amplified circZCCHC6 (107 nt) and circHIPK3 (120 nt); (b) Sanger sequencing results
spanning the junction site (underlined) of cited circRNAs; Comparison of nCounter normalized
counts versus ∆∆Cts values by RT-qPCR for circZCCHC6 (c) and circHIPK3 (d) in analyzed samples.
Pearson’s correlation coefficient is indicated. ns, not significant. ** means two grades of significant
(p < 0.01).

3.3. Development of a CircRNA-Signature Associated with Early-Stage NSCLC

Interquartile range analysis classified 9/66 samples as potential outliers (Figure 7a)
and PCA revealed that they deviated from the main cluster of observations (Figure S2).
Consequently, these nine samples were excluded from further analysis.
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Figure 7. Data outlier detection and normalization for machine learning (ML) processing. (a) Outlier
detection using the 1.5 IQR rule; (b) RUVSeq/DESeq2 RLE plot of normalized data (k = 1).

Then, different R packages including DESeq2, edgeR, RUVSeq and their combination
were tested in order to select the normalization approach that best adapts to our data.
As a result, RLE plots indicated a superior performance of RUVSeq-DESeq2 versus the
other combinations (Figures 7b and S3). Consequently, RUVSeq-DESeq2 normalization
was selected for the rest of the study.

Next, ML was performed using RFE along with RF classifier and LOOCV, as described
in Methods, in order to obtain a signature associated with NSCLC. As a result, ETC was
selected as the best model, with a signature of 10 circRNAs (including circular Family
With Sequence Similarity 13 Member B -circFAM13B, circular ADAM Metallopeptidase
Domain 22 -circADAM22, circular UBX Domain Protein 7 -circUBXN7, circZCCHC6, circu-
lar Integrin Subunit Alpha X -circITGAX, circular Retinol Dehydrogenase 11 -circRDH11,
circEPB41L2, circular CDC Like Kinase 1 -circCLK1, circular Phenylalanyl-tRNA Synthetase
Subunit Alpha -circFARSA, and circular Phosphoinositide-3-Kinase Regulatory Subunit
1 -circPIK3R1) showing an AUC ROC of 0.86 (Figure 8a). Signature scores were found
to be statistically different when comparing early-stage NSCLC and non-cancer controls
(Mann–Whitney U test, p < 0001; Figure 8b). The sensitivity and specificity of the ETC
signature were of 90% (CI = 73.47–97.89%) and 81% (CI = 61.92%%–93.70%) respectively,
outperforming the RF and KNN classifiers (Table 3). The accuracy achieved with ETC was
86%, resulting in 49 out of the 66 cases being correctly classified (Figure 8c).
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Figure 8. Machine learning (ML) analysis of extracellular vesicle (EV)-enriched samples. (a) Area
under the ROC curve of the 10 circRNA-signature using recursive feature elimination (RFE) for cohort
classification; (b) Scores of early-stage NSCLC versus control samples based on expression of the
10-circRNA signature (p < 0.001 in a two-tailed Mann–Whitney U test); (c) Confusion matrix based on
the ETC classification scores. ***: p < 0.001.
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Table 3. Precision assessment of the ML generated circRNA signature with ETC, RF and KNN. The
95% CI are indicated.

Model ETC RF KNN

No. concordant samples 49 44 30
No. discordant samples 8 13 27

AUC ROC 0.86 0.83 0.54
Accuracy 86% 77% 53%

Sensitivity 90%
(CI = 73.47–97.89%)

83%
(CI = 65.28–94.36%)

50%
CI = 31.30–68.70%)

Specificity 81%
(CI = 61.92–93.70%)

70%
(CI = 49.82–86.25%)

56%
CI = 41.83–68.49%)

PPV 84%
(CI = 70.81–92.32%)

76%
(CI = 63.10–85.10%)

56%
(CI = 41.83–68.49%)

NPV 88%
(CI = 71.18–95.61%)

79%
(CI = 62.20–89.77%)

50%
(CI = 37.95–62.02%)

Cohen’s κ 0.72
(CI = 0.458–0.976)

0.54
(CI = 0.281–0.798)

0.06
(CI =−0.202–0.313)

ML = machine learning, AUC = area under the curve, ROC = receiver operating characteristic, RF = random
forest, KNN = K-nearest neighbor, CI = confidence interval, PPV = positive predictive value, NPV = negative
predictive value.

Then, a univariate analysis was performed to explore the association of the ETC
circRNA signature with gender, age, smoking, cancer status and tumor stage (Figure 9a). A
statistically significant correlation was found for the signature with age (odds ratio = 24.91,
p < 0.0001), and particularly cancer status (odds ratio of 39.6, p < 0.0001).
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Figure 9. Association between clinical characteristics and ML-generated 10-circRNA signature.
(a) Univariate analysis exploring associations between presented 10-circRNA signature and patient
characteristics. Forest plot represents the odds ratios with a 95% Wald confidence limit. (b) Multi-
variate analysis exploring associations between presented 10-circRNA signature with age and cancer
status. Forest plot represents the odds ratios with a 95% Wald confidence limit.
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To further evaluate the implication of age and cancer status on the ML-developed
signature, we first performed an exploratory study assessing the interconnexion of both
variables by performing a chi-square test. As a result, a strong association between age and
cancer status was found, with a p < 0.0001 (Table 4).

Table 4. Association between age and cancer status.

Statistic DF Value p-Value

Chi-Square 1 32.245 <0.0001
Likelihood Ratio Chi-Square 1 41.232 <0.0001

DF = Degrees of freedom.

Next, a multivariate analysis was carried out. Results not only demonstrated depen-
dency of these two variables, but also showed a statistically significant correlation between
the signature and cancer status (p = 0.0036, Table 5, Figure 9b). No correlation was found
between age and presented signature, in this regard (p = 0.0784, Table 5, Figure 9b)

Table 5. Analysis of maximum likelihood estimates.

Parameter DF Estimate Standard
Error

Wald
Chi-Square p-Value

Age 1 0.356 1.301 0.075 0.7840
Cancer status 1 3.427 1.178 8.462 0.0036

DF = Degrees of freedom.

4. Discussion

EVs are released by most cell types and play an important role in cancer cell com-
munication. Many publications have demonstrated the role of EVs as key modulators in
cancer progression [34,35], which requires intercellular communication mediated by the
horizontal transferring of biological information via the EV cargo of proteins, DNA and
coding/non-coding RNA, including circRNAs. Therefore, analysis of EVs can provide a
snapshot of the tumor and serve as a valuable tool to discover liquid biopsy biomarkers.
CircRNAs are highly enriched in EVs [7] and show a relatively high stability compared to
other forms of RNA [8]. Several studies have highlighted their potential as liquid biopsy
biomarkers [12] but current limitations in circRNA quantification methods are limiting their
implementation in the clinical setting. Consequently, new, and robust protocols for circRNA
analysis are needed. The nCounter platform has gained popularity among translational
investigators for transcriptional research not only for solid biopsies but also for EV samples.
However, studies focusing on circRNA analysis by nCounter are limited and mostly re-
stricted to tissue specimens [30,36–40]. In particular, to the best of our knowledge, nCounter
has never been applied to the analysis of circRNA in liquid biopsies of lung cancer patients.
Consequently, we developed a comprehensive protocol for nCounter-based EV-circRNA
expression analysis, from EV enrichment to differential expression and subsequent ML
analysis. Key points in this protocol were the initial volume of plasma, the EV purification
method and the number of cycles for the pre-amplification step prior to nCounter testing.

UC is currently still the method of choice for EV isolation in the research setting and we
have previously demonstrated its utility for the downstream analysis of cell line-derived EV
circRNAs [41]. However, ultracentrifuges are not usually available in clinical laboratories,
while precipitation-based kits such as the miRCURY Exosome Serum/Plasma Kit represent
an easily implementable option with a simple, on-the-bench protocol and short hands-on
time. In our study, we compared the two methodologies using plasma samples from an
NSCLC patient and a healthy donor. The presence of EV-like particles in all preparations
was confirmed by TEM and nanoFCM. Interestingly, a more uniform EV population with
an exosomal size-range was found by TEM in both cancer and control samples processed
with the miRCURY kit, along with a higher concentration of 40–200 nm particles observed
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by nanoFCM. A possible explanation to this event could be a size-selective enrichment
attributed to this type of precipitation-based preparations, as previously reported in serum
samples [42]. This finding prompted us to select miRCURY for further assay development.
In addition, a higher number of EV-like particles was observed in the cancer sample
compared to the control, regardless the isolation method used. Although a higher number of
samples should be analyzed for further confirmation, preliminary results are in agreement
with previous reports indicating a higher abundance of EVs in cancer patients [43].

Finally, adding to the evidence provided by TEM and nanoFCM, a treatment with
RNase A was applied to EV-enriched samples prior to EV lysis and incorporated into our
protocol to eliminate any extravesicular RNA. The resulting and subsequently analyzed
RNA proved to be protected from the digestion of cited ribonuclease, indicating a vesicular
origin of the transcripts.

In a previous study, a volume of 500 µL of plasma was found to be sufficient for
the analysis of EV-derived mRNA by nCounter [25]. Here, we compared several plasma
volumes and found that 500 µL outperformed 1000 and 1500 µL for circRNAs analysis,
both in terms of the number of circRNA molecules detected and total counts. A possible
explanation for these results may rely on saturation issues with the circRNAs/reporter–
probe complexes when a higher plasma input is applied, which impede a correct molecule
identification by the digital analyzer. Regarding the number of cycles for the preamplifica-
tion step, we investigated a range from 10 to 20 in an effort to reduce amplification-related
background noise to a minimum, and we found that a 10-cycle pre-amplification step
yielded adequate results.

Then, we applied our protocol to assess circular transcripts in early-stage NSCLC
samples (n = 36) and to non-tumor controls (n = 30). We found that eight circRNAs
were found differentially expressed between the two cohorts. Among them, circEPB41L2,
circZCCHC6 and circHIPK3 showed the highest number of counts in early-stage cancer
patients (Table S4). Interestingly, we previously found circEPB41L2 differentially expressed
in FFPE tissues of early-stage lung cancer patients [30] and found that it displayed four
binding sites with hsa-miR-942, which has been described as an activator of the Wnt/β-
catenin signaling pathway [44,45] in colorectal and esophageal cancers. Our results warrant
further investigation in the biology of this circRNA to characterize its role in lung cancer.
Regarding circHIPK3, it has been extensively investigated in lung cancer and found to
exert a dual activity over miR-149 [46] and mir-124 [47,48], inducing cell proliferation and
inhibiting apoptosis. Our results are in agreement with these findings, since circHIPK3 was
upregulated in EV samples from early-stage NSCLC patients. Finally, circZCCHC6 has
been recently described to regulate lysophosphatidylcholine acyltransferase 1 (LPCAT1)
levels via miR-433-3p [49] in lung cancer. We used circinteractome (www.circinteractome.
nia.nah.gov) to investigate possible additional miRNA binding sites, finding matches for
7 additional transcripts (miR-579-3p, miR-623, miR-1197, miR-1304 miR-548l, miR-605 and
miR-935). All these miRNAs have been reported to be downregulated in lung tumors and
have been related with poor prognosis, tumor growth and metastases [50–56].

ML and other computational methods based on artificial intelligence (AI) have emerged
in the last decade for multileveled analysis of different datasets. In particular, ML enables
computers to make predictions by finding patterns within analyzed data [57], offering
a novel approach for the development of predictive signatures that often reach a higher
predictive value than biomarkers found by differential expression analyses. Consequently,
we decided to use ML in our study. To this end, we developed a pipeline with several
steps. First, using IQR and PCA plots, we identified nine outliers, which were excluded
from downstream analyses. An RLE plot from each different normalization procedure was
generated, showing a higher performance of the RUVSeq-DESeq2 function when compared
to the other combinations (Figures 7b and S3A–C). Finally, we used RFE along with LOOCV
and the RF classifier as the feature selection algorithm to automatically determine the most
significant circRNAs which are best suited for the construction of the prognostic signature.
The final 10-circRNA signature included two of the eight circular transcripts previously

www.circinteractome.nia.nah.gov
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found by differential expression analysis and eight additional transcripts, including circ-
FARSA. Interestingly, circFARSA has been described as a plasma biomarker of NSCLC [58],
promoting tumor invasion and metastases via the PTEN/PI3K/AKT axis [59].

Since we did not sort EV populations, we could not verify the vesicular cell or tissue
origin of the circRNAs included in the ML signature nor the origin of the circular transcripts,
either cancer cells or tumor microenvironment. Also, we did not investigate the biological
role of the circRNAs, being out of the scope of our work.

In addition, while multivariate analysis could demonstrate that classification accuracy
of presented signature is based on cancer status and no other clinicopathological charac-
teristics (Figure 9), the lack of > 60-year-old individuals was a limitation in the study. The
inclusion of equivalent cohorts in terms of age should be taking into consideration for the
design of forthcoming validation studies.

Finally, all 36 cancer samples included in this study were lung adenocarcinomas, with
the exception of 4 squamous carcinoma and 5 NSCLC samples with unknown histological
subtype. A uniform inclusion of the different lung cancer histologies is suggested for
future validation studies to assess the predictive power of the signature for other subtypes
of NSCLC.

5. Conclusions

We have demonstrated the feasibility of using nCounter for the multiplex study of
plasma-EV circRNAs in liquid biopsies of lung cancer patients, including differential
expression analysis and development of predictive ML signatures. Further studies of larger
cohorts are warranted in order to determine the clinical applicability of such signatures.
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Confusion matrices summarizing the performance of the different classification algorithms.

Author Contributions: Conceptualization, C.P.-V. and R.R.; methodology, C.P.-V., S.G. and J.W.P.B.;
software, S.G.; formal analysis, C.P.-V., S.G. and A.D.; investigation, C.P.-V., S.G., A.G.-C., D.F., M.F.,
J.B.-A. and J.V.; resources, A.A.-H., R.R. and M.Á.M.-V.; data curation, C.P.-V.; writing—original
draft preparation, C.P.-V.; writing—review and editing, M.Á.M.-V.; visualization, C.P.-V. and S.G.;
supervision, R.R., M.Á.M.-V., A.F.-H., M.H. and N.Z.; validation, C.P.-V.; project administration,
C.P.-V.; funding acquisition, R.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie grant agreement ELBA No 765492.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Quirón Hospitals (2021/11-ONC-
DEX-HUSC-HUGC. 15-02-2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author (carlospedraz@icloud.com) upon reasonable request.

Acknowledgments: We would like to thank Neil Bertram for his language editing assistance. The
investigators also wish to thank the patients for kindly agreeing to donate samples to this study.
Figure 4 was created with Biorender.com.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/pharmaceutics14102034/s1
https://www.mdpi.com/article/10.3390/pharmaceutics14102034/s1


Pharmaceutics 2022, 14, 2034 16 of 18

References
1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [CrossRef] [PubMed]
2. European Union. ECIS—European Cancer Information System. Available online: https://ecis.jrc.ec.europa.eu (accessed on 30

June 2022).
3. Crosby, D.; Bhatia, S.; Brindle Kevin, M.; Coussens Lisa, M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald Rebecca, C.; Gambhir

Sanjiv, S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [CrossRef] [PubMed]
4. Perakis, S.; Speicher, M.R. Emerging concepts in liquid biopsies. BMC Med. 2017, 15, 75. [CrossRef] [PubMed]
5. Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al.

Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [CrossRef]
[PubMed]

6. Bracht, J.W.P.; Mayo-de-Las-Casas, C.; Berenguer, J.; Karachaliou, N.; Rosell, R. The Present and Future of Liquid Biopsies in
Non-Small Cell Lung Cancer: Combining Four Biosources for Diagnosis, Prognosis, Prediction, and Disease Monitoring. Curr.
Oncol. Rep. 2018, 20, 70. [CrossRef]

7. Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in
exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015, 25, 981–984. [CrossRef]

8. Xiao, M.-S.; Wilusz, J.E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs
containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 2019, 47, 8755–8769. [CrossRef]

9. Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as
efficient microRNA sponges. Nature 2013, 495, 384–388. [CrossRef]

10. Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer,
M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [CrossRef]

11. Zhou, R.; Wu, Y.; Wang, W.; Su, W.; Liu, Y.; Wang, Y.; Fan, C.; Li, X.; Li, G.; Li, Y.; et al. Circular RNAs (circRNAs) in cancer. Cancer
Lett. 2018, 425, 134–142. [CrossRef]

12. Pedraz-Valdunciel, C.; Rosell, R. Defining the landscape of circRNAs in non-small cell lung cancer and their potential as liquid
biopsy biomarkers: A complete review including current methods. Extracell. Vesicles Circ. Nucleic Acids 2021, 2, 179–201.
[CrossRef]

13. Zhou, Q.; Ju, L.-L.; Ji, X.; Cao, Y.-L.; Shao, J.-G.; Chen, L. Plasma circRNAs as Biomarkers in Cancer. Cancer Manag. Res. 2021, 13,
7325–7337. [CrossRef] [PubMed]

14. Kulkarni, M.M. Digital Multiplexed Gene Expression Analysis Using the NanoString nCounter System. Curr. Protoc. Mol. Biol.
2011, 94, 25B.10.1–25B.10.17. [CrossRef]

15. Geiss, G.K.; Bumgarner, R.E.; Birditt, B.; Dahl, T.; Dowidar, N.; Dunaway, D.L.; Fell, H.P.; Ferree, S.; George, R.D.; Grogan, T.; et al.
Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008, 26, 317–325. [CrossRef]

16. Warren, S. Simultaneous, Multiplexed Detection of RNA and Protein on the NanoString® nCounter® Platform. In Gene Expression
Analysis: Methods and Protocols; Raghavachari, N., Garcia-Reyero, N., Eds.; Springer: New York, NY, USA, 2018; pp. 105–120.
[CrossRef]

17. Giménez-Capitán, A.; Bracht, J.; García, J.J.; Jordana-Ariza, N.; García, B.; Garzón, M.; Mayo-de-las-Casas, C.; Viteri-Ramirez, S.;
Martinez-Bueno, A.; Aguilar, A.; et al. Multiplex Detection of Clinically Relevant Mutations in Liquid Biopsies of Cancer Patients
Using a Hybridization-Based Platform. Clin. Chem. 2021, 67, 554–563. [CrossRef]

18. Porras, T.B.; Kaur, P.; Ring, A.; Schechter, N.; Lang, J.E. Challenges in using liquid biopsies for gene expression profiling. Oncotarget
2018, 9, 7036–7053. [CrossRef]

19. Beck, T.N.; Boumber, Y.A.; Aggarwal, C.; Pei, J.; Thrash-Bingham, C.; Fittipaldi, P.; Vlasenkova, R.; Rao, C.; Borghaei, H.;
Cristofanilli, M.; et al. Circulating tumor cell and cell-free RNA capture and expression analysis identify platelet-associated genes
in metastatic lung cancer. BMC Cancer 2019, 19, 603. [CrossRef]

20. Wu, T.-C.; Xu, K.; Martinek, J.; Young, R.R.; Banchereau, R.; George, J.; Turner, J.; Kim, K.I.; Zurawski, S.; Wang, X.; et al. IL1
Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer. Cancer Res.
2018, 78, 5243–5258. [CrossRef]

21. Kossenkov, A.V.; Qureshi, R.; Dawany, N.B.; Wickramasinghe, J.; Liu, Q.; Majumdar, R.S.; Chang, C.; Widura, S.; Kumar, T.; Horng,
W.-H.; et al. A Gene Expression Classifier from Whole Blood Distinguishes Benign from Malignant Lung Nodules Detected by
Low-Dose CT. Cancer Res. 2019, 79, 263–273. [CrossRef]

22. Kamyabi, N.; Abbasgholizadeh, R.; Maitra, A.; Ardekani, A.; Biswal, S.L.; Grande-Allen, K.J. Isolation and mutational assessment
of pancreatic cancer extracellular vesicles using a microfluidic platform. Biomed. Microdevices 2020, 22, 23. [CrossRef]

23. Garcia-Contreras, M.; Shah, S.H.; Tamayo, A.; Robbins, P.D.; Golberg, R.B.; Mendez, A.J.; Ricordi, C. Plasma-derived exosome
characterization reveals a distinct microRNA signature in long duration Type 1 diabetes. Sci. Rep. 2017, 7, 5998. [CrossRef]
[PubMed]

24. Vicentini, C.; Calore, F.; Nigita, G.; Fadda, P.; Simbolo, M.; Sperandio, N.; Luchini, C.; Lawlor, R.T.; Croce, C.M.; Corbo, V.; et al.
Exosomal miRNA signatures of pancreatic lesions. BMC Gastroenterol. 2020, 20, 137. [CrossRef] [PubMed]

25. Bracht, J.W.P.; Gimenez-Capitan, A.; Huang, C.-Y.; Potie, N.; Pedraz-Valdunciel, C.; Warren, S.; Rosell, R.; Molina-Vila, M.A.
Analysis of extracellular vesicle mRNA derived from plasma using the nCounter platform. Sci. Rep. 2021, 11, 3712. [CrossRef]

http://doi.org/10.3322/caac.21708
http://www.ncbi.nlm.nih.gov/pubmed/35020204
https://ecis.jrc.ec.europa.eu
http://doi.org/10.1126/science.aay9040
http://www.ncbi.nlm.nih.gov/pubmed/35298272
http://doi.org/10.1186/s12916-017-0840-6
http://www.ncbi.nlm.nih.gov/pubmed/28381299
http://doi.org/10.1186/s12943-022-01543-7
http://www.ncbi.nlm.nih.gov/pubmed/35303879
http://doi.org/10.1007/s11912-018-0720-z
http://doi.org/10.1038/cr.2015.82
http://doi.org/10.1093/nar/gkz576
http://doi.org/10.1038/nature11993
http://doi.org/10.1038/nature11928
http://doi.org/10.1016/j.canlet.2018.03.035
http://doi.org/10.20517/evcna.2020.07
http://doi.org/10.2147/CMAR.S330228
http://www.ncbi.nlm.nih.gov/pubmed/34584458
http://doi.org/10.1002/0471142727.mb25b10s94
http://doi.org/10.1038/nbt1385
http://doi.org/10.1007/978-1-4939-7834-2_5
http://doi.org/10.1093/clinchem/hvaa248
http://doi.org/10.18632/oncotarget.24140
http://doi.org/10.1186/s12885-019-5795-x
http://doi.org/10.1158/0008-5472.CAN-18-0413
http://doi.org/10.1158/0008-5472.CAN-18-2032
http://doi.org/10.1007/s10544-020-00483-7
http://doi.org/10.1038/s41598-017-05787-y
http://www.ncbi.nlm.nih.gov/pubmed/28729721
http://doi.org/10.1186/s12876-020-01287-y
http://www.ncbi.nlm.nih.gov/pubmed/32375666
http://doi.org/10.1038/s41598-021-83132-0


Pharmaceutics 2022, 14, 2034 17 of 18

26. Hansen, E.B.; Fredsøe, J.; Okholm, T.L.H.; Ulhøi, B.P.; Klingenberg, S.; Jensen, J.B.; Kjems, J.; Bouchelouche, K.; Borre, M.;
Damgaard, C.K.; et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med.
2022, 14, 8. [CrossRef]

27. Berenguer, J.; Lagerweij, T.; Zhao, X.W.; Dusoswa, S.; van der Stoop, P.; Westerman, B.; Gooijer, M.C.d.; Zoetemelk, M.; Zomer, A.;
Crommentuijn, M.H.W.; et al. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing
for cellular uptake via chemokine receptor CCR8. J. Extracell. Vesicles 2018, 7, 1446660. [CrossRef] [PubMed]

28. Tian, Y.; Gong, M.; Hu, Y.; Liu, H.; Zhang, W.; Zhang, M.; Hu, X.; Aubert, D.; Zhu, S.; Wu, L.; et al. Quality and efficiency
assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J. Extracell. Vesicles 2020, 9, 1697028. [CrossRef]
[PubMed]

29. Aguado, C.; Giménez-Capitán, A.; Román, R.; Rodríguez, S.; Jordana-Ariza, N.; Aguilar, A.; Cabrera-Gálvez, C.; Rivas-Corredor,
C.; Lianes, P.; Viteri, S.; et al. RNA-Based Multiplexing Assay for Routine Testing of Fusion and Splicing Variants in Cytological
Samples of NSCLC Patients. Diagnostics 2020, 11, 15. [CrossRef]

30. Pedraz-Valdunciel, C.; Giannoukakos, S.; Potie, N.; Giménez-Capitán, A.; Huang, C.-Y.; Hackenberg, M.; Fernandez-Hilario, A.;
Bracht, J.; Filipska, M.; Aldeguer, E.; et al. Digital multiplexed analysis of circular RNAs in FFPE and fresh non-small cell lung
cancer specimens. Mol. Oncol. 2022, 16, 2367–2383. [CrossRef]

31. Margolis, L.; Sadovsky, Y. The biology of extracellular vesicles: The known unknowns. PLOS Biol. 2019, 17, e3000363. [CrossRef]
32. Reclusa, P.; Sirera, R.; Araujo, A.; Giallombardo, M.; Valentino, A.; Sorber, L.; Bazo, I.G.; Pauwels, P.; Rolfo, C. Exosomes genetic

cargo in lung cancer: A truly Pandora’s box. Transl. Lung Cancer Res. 2016, 5, 483–491. [CrossRef]
33. Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans,

R.; et al. Reassessment of Exosome Composition. Cell 2019, 177, 428–445.e418. [CrossRef] [PubMed]
34. Yang, X.; Zhang, Y.; Zhang, Y.; Zhang, S.; Qiu, L.; Zhuang, Z.; Wei, M.; Deng, X.; Wang, Z.; Han, J. The Key Role of Exosomes on

the Pre-metastatic Niche Formation in Tumors. Front. Mol. Biosci. 2021, 8, 703640. [CrossRef] [PubMed]
35. Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; et al.

Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015, 17, 816–826. [CrossRef]
36. Dahl, M.; Daugaard, I.; Andersen, M.S.; Hansen, T.B.; Grønbæk, K.; Kjems, J.; Kristensen, L.S. Enzyme-free digital counting of

endogenous circular RNA molecules in B-cell malignancies. Lab. Investig. 2018, 98, 1657–1669. [CrossRef]
37. Zhang, J.; Zhang, X.; Li, C.; Yue, L.; Ding, N.; Riordan, T.; Yang, L.; Li, Y.; Jen, C.; Lin, S.; et al. Circular RNA profiling provides

insights into their subcellular distribution and molecular characteristics in HepG2 cells. RNA Biol. 2019, 16, 220–232. [CrossRef]
[PubMed]

38. Das Mahapatra, K.; Pasquali, L.; Søndergaard, J.N.; Lapins, J.; Nemeth, I.B.; Baltás, E.; Kemény, L.; Homey, B.; Moldovan,
L.-I.; Kjems, J.; et al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell
carcinoma. Sci. Rep. 2020, 10, 3637. [CrossRef]

39. Moldovan, L.-I.; Hansen, T.B.; Venø, M.T.; Okholm, T.L.H.; Andersen, T.L.; Hager, H.; Iversen, L.; Kjems, J.; Johansen, C.;
Kristensen, L.S. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the
psoriasis circRNAome. BMC Med. Genom. 2019, 12, 174. [CrossRef]

40. Ahmadov, U.; Bendikas, M.M.; Ebbesen, K.K.; Sehested, A.M.; Kjems, J.; Broholm, H.; Kristensen, L.S. Distinct circular RNA
expression profiles in pediatric ependymomas. Brain Pathol. 2021, 31, 387–392. [CrossRef]

41. Pedraz-Valdunciel, C.; Huang, C.; Ito, M.; Bracht, J.; Giménez-Capitán, A.; Aldeguer, E.; Filipska, M.; Xu, W.; Molina-Vila, M.A.;
Rosell, R. P65.04 Tracking circRNAs in Lung Adenocarcinoma Samples as Promising Biomarkers for Cancer Detection using the
NanoString nCounter®. Thorac. Oncol. 2021, 16, S555–S556. [CrossRef]

42. Helwa, I.; Cai, J.; Drewry, M.D.; Zimmerman, A.; Dinkins, M.B.; Khaled, M.L.; Seremwe, M.; Dismuke, W.M.; Bieberich, E.; Stamer,
W.D.; et al. A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial
Reagents. PLoS ONE 2017, 12, e0170628. [CrossRef]

43. Melo, S.A.; Luecke, L.B.; Kahlert, C.; Fernandez, A.F.; Gammon, S.T.; Kaye, J.; LeBleu, V.S.; Mittendorf, E.A.; Weitz, J.; Rahbari, N.;
et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015, 523, 177–182. [CrossRef] [PubMed]

44. Fasihi, A.; Soltani, B.M.; Ranjbaran, Z.S.; Bahonar, S.; Norouzi, R.; Nasiri, S. Hsa-miR-942 fingerprint in colorectal cancer through
Wnt signaling pathway. Gene 2019, 712, 143958. [CrossRef] [PubMed]

45. Ge, C.; Wu, S.; Wang, W.; Liu, Z.; Zhang, J.; Wang, Z.; Li, R.; Zhang, Z.; Li, Z.; Dong, S.; et al. miR-942 promotes cancer stem
cell-like traits in esophageal squamous cell carcinoma through activation of Wnt/β-catenin signalling pathway. Oncotarget 2015,
6, 10964–10977. [CrossRef] [PubMed]

46. Lu, H.; Han, X.; Ren, J.; Ren, K.; Li, Z.; Sun, Z. Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small
cell lung cancer through sponging miR-149. Cancer Biol. Ther. 2020, 21, 113–121. [CrossRef]

47. Chen, X.; Mao, R.; Su, W.; Yang, X.; Geng, Q.; Guo, C.; Wang, Z.; Wang, J.; Kresty, L.A.; Beer, D.G.; et al. Circular RNA circHIPK3
modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy 2020, 16,
659–671. [CrossRef]

48. Yu, H.; Chen, Y.; Jiang, P. Circular RNA HIPK3 exerts oncogenic properties through suppression of miR-124 in lung cancer.
Biochem. Biophys. Res. Commun. 2018, 506, 455–462. [CrossRef]

49. Guo, Y.; Xue, W.; Sun, S.; Chen, X.; Li, H.; Yan, C. Circular RNA circZCCHC6 contributes to tumorigenesis by regulating LPCAT1
via miR-433-3p in non-small cell lung cancer. Clin. Exp. Med. 2022. [CrossRef]

http://doi.org/10.1186/s13073-021-01009-3
http://doi.org/10.1080/20013078.2018.1446660
http://www.ncbi.nlm.nih.gov/pubmed/29696074
http://doi.org/10.1080/20013078.2019.1697028
http://www.ncbi.nlm.nih.gov/pubmed/31839906
http://doi.org/10.3390/diagnostics11010015
http://doi.org/10.1002/1878-0261.13182
http://doi.org/10.1371/journal.pbio.3000363
http://doi.org/10.21037/tlcr.2016.10.06
http://doi.org/10.1016/j.cell.2019.02.029
http://www.ncbi.nlm.nih.gov/pubmed/30951670
http://doi.org/10.3389/fmolb.2021.703640
http://www.ncbi.nlm.nih.gov/pubmed/34595207
http://doi.org/10.1038/ncb3169
http://doi.org/10.1038/s41374-018-0108-6
http://doi.org/10.1080/15476286.2019.1565284
http://www.ncbi.nlm.nih.gov/pubmed/30614753
http://doi.org/10.1038/s41598-020-59660-6
http://doi.org/10.1186/s12920-019-0616-2
http://doi.org/10.1111/bpa.12922
http://doi.org/10.1016/j.jtho.2021.01.998
http://doi.org/10.1371/journal.pone.0170628
http://doi.org/10.1038/nature14581
http://www.ncbi.nlm.nih.gov/pubmed/26106858
http://doi.org/10.1016/j.gene.2019.143958
http://www.ncbi.nlm.nih.gov/pubmed/31278963
http://doi.org/10.18632/oncotarget.3696
http://www.ncbi.nlm.nih.gov/pubmed/25844602
http://doi.org/10.1080/15384047.2019.1669995
http://doi.org/10.1080/15548627.2019.1634945
http://doi.org/10.1016/j.bbrc.2018.10.087
http://doi.org/10.1007/s10238-021-00780-2


Pharmaceutics 2022, 14, 2034 18 of 18

50. Wu, R.-R.; Zhong, Q.; Liu, H.-F.; Liu, S.-B. Role of miR-579-3p in the development of squamous cell lung carcinoma and the
regulatory mechanisms. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9464–9470.

51. Wei, S.; Zhang, Z.-y.; Fu, S.-l.; Xie, J.-g.; Liu, X.-s.; Xu, Y.-j.; Zhao, J.-p.; Xiong, W.-n. Erratum: Hsa-miR-623 suppresses tumor
progression in human lung adenocarcinoma. Cell Death Dis. 2017, 8, e2829. [CrossRef]

52. Sun, B.; Hua, J.; Cui, H.; Liu, H.; Zhang, K.; Zhou, H. MicroRNA-1197 downregulation inhibits proliferation and migration in
human non- small cell lung cancer cells by upregulating HOXC11. Biomed. Pharmacother. 2019, 117, 109041. [CrossRef]

53. Li, C.-g.; Pu, M.-f.; Li, C.-z.; Gao, M.; Liu, M.-x.; Yu, C.-z.; Yan, H.; Peng, C.; Zhao, Y.; Li, Y.; et al. MicroRNA-1304 suppresses
human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. Acta Pharmacol. Sin. 2017, 38, 110–119.
[CrossRef] [PubMed]

54. Liu, C.; Yang, H.; Xu, Z.; Li, D.; Zhou, M.; Xiao, K.; Shi, Z.; Zhu, L.; Yang, L.; Zhou, R. microRNA-548l is involved in the migration
and invasion of non-small cell lung cancer by targeting the AKT1 signaling pathway. J. Cancer Res. Clin. Oncol. 2015, 141, 431–441.
[CrossRef] [PubMed]

55. Liao, Y.; Cao, L.; Wang, F.; Pang, R. miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in non–small-cell lung
cancer. J. Cell. Biochem. 2020, 121, 779–787. [CrossRef]

56. Wang, C.; Li, S.; Xu, J.; Niu, W. microRNA-935 is reduced in non-small cell lung cancer tissue, is linked to poor outcome, and acts
on signal transduction mediator E2F7 and the AKT pathway. Br. J. Biomed. Sci. 2019, 76, 17–23. [CrossRef] [PubMed]

57. Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An
Introduction to Machine Learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [CrossRef]

58. Hang, D.; Zhou, J.; Qin, N.; Zhou, W.; Ma, H.; Jin, G.; Hu, Z.; Dai, J.; Shen, H. A novel plasma circular RNA circFARSA is a
potential biomarker for non-small cell lung cancer. Cancer Med. 2018, 7, 2783–2791. [CrossRef] [PubMed]

59. Chen, T.; Liu, Y.; Li, C.; Xu, C.; Ding, C.; Chen, J.; Zhao, J. Tumor-derived exosomal circFARSA mediates M2 macrophage
polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat. Res. Commun.
2021, 28, 100412. [CrossRef] [PubMed]

http://doi.org/10.1038/cddis.2017.254
http://doi.org/10.1016/j.biopha.2019.109041
http://doi.org/10.1038/aps.2016.92
http://www.ncbi.nlm.nih.gov/pubmed/27641735
http://doi.org/10.1007/s00432-014-1836-7
http://www.ncbi.nlm.nih.gov/pubmed/25245053
http://doi.org/10.1002/jcb.29323
http://doi.org/10.1080/09674845.2018.1520066
http://www.ncbi.nlm.nih.gov/pubmed/30203720
http://doi.org/10.1002/cpt.1796
http://doi.org/10.1002/cam4.1514
http://www.ncbi.nlm.nih.gov/pubmed/29722168
http://doi.org/10.1016/j.ctarc.2021.100412
http://www.ncbi.nlm.nih.gov/pubmed/34119765

	Introduction 
	Materials and Methods 
	Patient Samples 
	Plasma Processing 
	Enrichment of EVs 
	Transmission Electron Microscopy (TEM) 
	Nano-Flow Cytometry Measurements 
	RNA Isolation and DNase Treatment 
	RT-qPCR and Sanger Sequencing Analysis 
	nCounter Processing 
	Differential Expression Analysis 
	Data Pre-Processing and Normalization for Signature Development 
	Machine Learning (ML) for Signature Development 
	Univariant and Multivariant Analyses 

	Results 
	Enrichment of Plasma EVs and Workflow Development for nCounter CircRNA Analysis 
	CircRNA Expression in Plasma EV Samples 
	Development of a CircRNA-Signature Associated with Early-Stage NSCLC 

	Discussion 
	Conclusions 
	References

