Mostrar el registro sencillo del ítem

dc.contributor.authorBueno, Antonio
dc.contributor.authorLópez Camino, Rafael 
dc.date.accessioned2022-10-13T11:07:03Z
dc.date.available2022-10-13T11:07:03Z
dc.date.issued2022-01-17
dc.identifier.citationPublished version: Antonio Bueno, Rafael López, Radial solutions for equations of Weingarten type, Journal of Mathematical Analysis and Applications, Volume 517, Issue 1, 2023, 126575, ISSN 0022-247X, [https://doi.org/10.1016/j.jmaa.2022.126575]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77296
dc.description.abstractIn this paper we study the linear Weingarten equation defined by the fully non-linear PDE adivDu/root 1+|Du|(2)+bdetD(2)u/(1+|Du|(2))(2)=?(1/root 1+|Du|(2)) in a domain omega subset of R-2, where ?is an element of C-1([-1,1]) and a,b is an element of R. We approach the existence of radial solutions when omega is a disk of small radius, giving an affirmative answer when the PDE is of elliptic type. In the hyperbolic case we show that no radial solution exists, while in the parabolic case we find explicitly all the solutions. In the elliptic case we prove uniqueness and symmetry results concerning the Dirichlet problem of such equation.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectWeingarten equationes_ES
dc.subjectElliptic equationes_ES
dc.subjectDirichlet problemes_ES
dc.titleRadial solutions for equations of Weingarten typees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional