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Abstract

In this paper we study the linear Weingarten equation defined by the fully
non-linear PDE

a div
Du√

1 + |Du|2
+ b

detD2u

(1 + |Du|2)2
= φ

(
1√

1 + |Du|2

)
in a domain Ω ⊂ R2, where φ ∈ C1([−1, 1]) and a, b ∈ R. We approach
the existence of radial solutions when Ω is a disk of small radius, giving an
affirmative answer when the PDE is of elliptic type. In the hyperbolic case
we show that no radial solution exists, while in the parabolic case we find
explicitly all the solutions. Finally, in the elliptic case we prove uniqueness
and symmetry results concerning the Dirichlet problem of such equation.

Keywords: Weingarten equation, elliptic equation, radial solution,
Dirichlet problem
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1. Introduction

Consider the existence and uniqueness of classical solutions for the Dirich-
let problem a div

Du√
1 + |Du|2

+ b
detD2u

(1 + |Du|2)2
= φ

(
1√

1 + |Du|2

)
, in Ω

u = 0, on ∂Ω,

(1)
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where Ω is a bounded smooth domain of R2, a, b are constants and φ ∈
C1([−1, 1]). In equation (1), the first term in the left-hand side is a quasilin-
ear operator, while the second one is of Monge-Ampère type. Some equations
of paramount importance have already appeared in the literature for partic-
ular choices of the constants a, b. For example, if b = 0, then (1) falls in the
class of prescribed mean curvature equations where the right-hand side de-
pends of the gradient Du. This equation has attracted the attention of many
researchers, becoming a fruitful topic of interest. Without aiming to collect
all this bibliography, we refer to the reader to [14] and references therein.

A solution of (1) parametrizes a surface in Euclidean space R3 whose
mean curvature H and Gauss curvature K satisfy the relation

2aH + bK = φ(〈N, v〉), (2)

where N is the Gauss map of the surface and v = (0, 0, 1). In general,
a surface that satisfies a relationship W (H,K) = 0 between H and K is
called a Weingarten surface. The simplest relation W is being linear, that
is, 2aH + bK = c for constants a, b, c ∈ R. Regarding this equation, surfaces
with constant mean curvature (b = 0) and with constant Gauss curvature
(a = 0) are particular examples of linear Weingarten surfaces. From now, we
will suppose that a, b 6= 0.

The generalization (2) is motivated by the theory of the flow by the mean
curvature of Huisken, Sinestrari and Ilmanen [9, 10] and the flow by the
Gauss curvature of Andrews and Urbas ([2, 18]). For example, a translating
soliton S is a solution of the mean curvature flow when S evolves purely
by translations along some direction of the space. If this direction is, say,
v = (0, 0, 1), then S + tv, t ∈ R, satisfies that for fixed t, the normal com-
ponent of the velocity vector v at each point is equal to the mean curvature
at that point. For the initial surface S, this implies that 2H = 〈N, v〉. In
nonparametric form, 〈N, v〉 coincides with 1/

√
1 + |Du|2, so the surface sat-

isfies (1) for b = 0 and φ the identity. Similarly, translating solitons by the
Gauss curvature are obtained in the same fashion by doing in (1) a = 0 and
φ the identity. Finally, we point out that the first author, together with
Gálvez and Mira, have developed a theory of complete surfaces whose mean
curvature is given as a prescribed function of its Gauss map, generalizing
some well-known results of the theory of constant mean curvature surfaces
and translating solitons of the mean curvature flow ([4, 5]).

The purpose of this paper is to investigate the radial solutions of (1) when
Ω is a round ball B(0, R) ⊂ R2 centered at the origin 0 and of radius R > 0.
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It is also desirable that the solutions of (1) inherit the symmetries of Ω, so if Ω
is a round ball, a solution of (1) must be radial. Our interest is to determine
the existence and uniqueness of radial solutions starting orthogonally from
the rotation axis. In the case that u = u(r) is such a radial solution, equation
(1) transforms into the initial value problem a

(
u′′

(1 + u′2)3/2
+

u′

r
√

1 + u′2

)
+ b

u′′u′

r(1 + u′2)2
= φ

(
1√

1 + u′2

)
, in (0, R)

u(0) = 0, u′(0) = 0,
(3)

Let us notice that the equation in (3) is singular at r = 0, so the solvability
is not assured by standard methods. Equivalently, we are asking for the exis-
tence of rotational surfaces satisfying the Weingarten relation (2) whose gen-
erating curve meets orthogonally the rotation axis. In the field of geometry,
there is a great interest in the classification of rotational linear Weingarten
surfaces (replacing φ by a constant c) in Euclidean space ([11, 15, 16]) and
also in other ambient spaces ([3, 6, 11, 12, 13]). As a consequence of our
investigations, we realized that the existence of solutions of (3) depended
not only on the constants a, b and the function φ, but strongly also on the
character of (3) as a partial differential equation. In case that the equation
is elliptic at r = 0, we give a positive answer to the problem.

Theorem 1.1. Suppose that (3) is elliptic at r = 0. Then there is R > 0
such that there exists a solution of (3) in [0, R].

The elliptic caracter of (3) at r = 0 depends on the sign of a2+bφ(1). For the
particular case 2aH + bK = c and when this relation is elliptic, we provide
a proof of the existence of solutions starting orthogonally from the rotation
axis.

In the other two types of equations, we achieve successful answers to the
existence problem of (3). In the case that the equation is hyperbolic at r = 0,
we obtain:

Theorem 1.2. If (3) is of hyperbolic type at r = 0, then there do not exist
radial solutions of (3).

If (3) is parabololic, we find all solutions regardless of the intersection
with the rotation axis being orthogonal or having a cusp, or even if the
solution stays at a positive distance to the rotation axis.
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Theorem 1.3. If (3) is of parabolic type, then the solutions are parametriza-
tions of suitable circles of fixed radius.

This paper is organized as follows. In Section (2), we relate the constants
a, b and the prescribed function φ with the character of the PDE (1) as
elliptic, hyperbolic and parabolic. We also state the character of equation
(3) at a single instant r = r0. In Section 3, we address the existence of
radial solutions of (1) for the hyperbolic and parabolic cases. First, we prove
that if the equation is hyperbolic, there are not solutions of (3) intersecting
orthogonally the rotation axis (Theorem 1.2). Second, in the parabolic case
we find all solutions forming all them a uniparametric family of circles of
the same radius (Theorem 1.3). Finally, in Section 4 we focus on the elliptic
case. We exhibit an affirmative solution to the existence problem of (3),
proving Theorem 1.1. Then, we prove uniqueness and symmetry results of
the solutions of the Dirichlet problem (1).

2. Types of Weingarten equations

Let us write (1) in nonparametric form. Let u = u(x, y) and suppose that
u satisfies (1). If we define the functional

F(p, q, r, s, t) = a
(1 + p2)s− 2pqt+ (1 + q2)r

(1 + p2 + q2)3/2
+b

rs− t2

(1 + p2 + q2)2
−φ

(
1√

1 + p2 + q2

)
.

then F(ux, uy, uxx, uyy, uxy) = 0. Furthermore, the determinant of the coeffi-
cients of second order is FrFs− 1

4
F2
t = (1+p2+q2)2(a2+bφ). Thus depending

on the sign on the left-hand, we have an EDP of elliptic, parabolic or hyper-
bolic type. Bearing this in mind, the following definition arises:

Definition 1. Let S be a surface satisfying (2).

• If a2 + bφ > 0, the surface is of elliptic type.

• If a2 + bφ = 0, the surface is of parabolic type.

• If a2 + bφ < 0, the surface is of hyperbolic type.
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Remark 2.1. The sphere of radius r > 0 satisfies (2) for different values of
a, b and choices of φ. Indeed, the left-hand side of (2) is (2ar+ b)/r2. Taking
φ the constant function φ = (2ar + b)/r2, then

a2 + bφ =
(ar + b)2

r2
.

Thus the sphere satisfies (2) for many values of a, b, being elliptic or parabolic
depending if ar + b 6= 0 or ar + b = 0, respectively.

We emphasize that for fixed a, b ∈ R and φ, a given surface may have
points of the three types, depending on the height of the parallel in S2 where
the Gauss map N lies, and eventually on the value of φ(〈N, (0, 0, 1)〉).

Some of the results achieved in this paper only depend on the local char-
acter of the PDE (1) as elliptic, hyperbolic or parabolic. For instance, as
proved in subsequent sections, the existence of solutions of (3) solely de-
pends on the sign of the quantity a2 + bφ(1). For other results, as the ones
exhibited in Section 4, the elliptic condition a2 + bφ > 0 must be everywhere
fulfilled.

Taking into account these discussions, we settle the notation in the fol-
lowing definition.

Definition 2. Let be u = u(r) a solution of (3) and r0 ≥ 0. We say that
(3) is:

• of elliptic type at r = r0 if a2 + bφ

(
1√

1+u′(r0)2

)
> 0;

• of parabolic type at r = r0 if a2 + bφ

(
1√

1+u′(r0)2

)
= 0; and

• of hyperbolic type at r = r0 if a2 + bφ

(
1√

1+u′(r0)2

)
< 0.

The conditions of being elliptic and hyperbolic are open, in the sense that if
(3) is elliptic or hyperbolic at some r0, there exists some ε > 0 such that (3)
is elliptic or hyperbolic for every r ∈ (r0 − ε, r0 + ε) ∩ [0,∞).

We will simply say that (3) is of elliptic type if a2 + bφ > 0 for every
possible value in the argument of φ, and similarly to the hyperbolic and
parabolic types.
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3. Radial solutions: hyperbolic and parabolic type

In this section we investigate the existence of classical radial solutions of
(3) in the hyperbolic and parabolic cases. We first prove Theorem 1.2, which
is formulated again for the reader’s convenience.

Theorem 3.1 (hyperbolic type). If (3) is of hyperbolic type at r = 0,
then there are not solutions of the initial value problem (3).

Proof. By contradiction, suppose that u = u(r) is a solution of the initial
value problem (3). Taking limits in (3) as r → 0 and applying the L’Hôpital
rule to the quotient u′(r)/r, we have

2au′′(0) + bu′′(0)2 = φ(1),

because u′(0) = 0 in φ(1/
√

1 + u′2). However, the discriminant of this equa-
tion on u′′(0) is a2 + bφ(1) which is negative, obtaining a contradiction.

Now we address the existence problem of (3) in the parabolic case. Since
a2 + bφ = 0 everywhere, then φ is a constant function, say, φ = c. Because
a2 + bc = 0, in particular b 6= 0. If we divide (3) by −b, we can assume
that b = −1 and c = a2. Furthermore, after a change of orientation on the
surface, if necessary, we can suppose that a > 0. Note that this change of the
orientation does not affect the right-hand side of (1), since φ = c. Definitively,
the class of parabolic equations (2) reduces to the linear Weingarten relation
2aH −K = a2 with a > 0.

We formulate again Theorem 1.3 and prove it, by finding all radial solu-
tions of (1) independently if the surface meets or not the rotation axis. See
Figure 1.

Theorem 3.2 (parabolic type). The solutions of

a

(
u′′

(1 + u′2)3/2
+

u′

r
√

1 + u′2

)
− u′′u′

r(1 + u′2)2
= a2, a > 0, (4)

are circles of radius a.

Proof. From (4),

u′′

(1 + u′2)3/2

(
a− u′

x
√

1 + u′2

)
= a

(
a− u′

x
√

1 + u′2

)
.

This implies the discussion of two cases.
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1. Suppose that there is r0 > 0 such that

a 6= u′(r0)

x
√

1 + u′(r0)2
.

Then in an interval around r0,

u′′

(1 + u′2)3/2
= a.

Then it is immediate that

u(r) = ±1

a

√
1− (ar + k)2 +m, (5)

for some constants k,m ∈ R. It is straightforward that u parametrizes
a circle of radius 1/a.

2. Suppose

a =
u′(r)

x
√

1 + u′(r)2

for all r. Solving this equation,

u(r) = ±1

a

√
1− a2r2 +m, m ∈ R.

Then u parametrizes a circle centered at r = 0 of radius 1/a. Let us
notice that this solutions is particular of (5) with k = 0.

Studying in detail each choice of k in (5), we conclude the next classifi-
cation of the radial solutions of (2) in the parabolic case.

Corollary 3.3. The radial solutions of the equation

a div
Du√

1 + |Du|2
− detD2u

(1 + |Du|2)2
= a2

are:

1. The vertical straight-line at r0 = 1/a.

2. From the solutions of (5), the constant k must be less than 1. Further-
more,

7



(a) If k ∈ (0, 1) we obtain a one-parameter family of minor subarcs
of the circle of radius 1/a that intersect the z-axis at two cusp
points.

(b) If k = 0 we obtain a half-circle centered at the z-axis of radius
1/a.

(c) If k ∈ (−1, 0) we obtain a one-parameter family of major subarcs
of the circle of radius 1/a that intersect the z-axis at two cusp
points.

(d) If k = −1 we obtain the full circle of radius 1/a intersecting tan-
gentially the z-axis.

(e) If k < −1 we obtain the full circle of radius 1/a strictly contained
in the halfplane r > 0.

Proof. A particular case to consider of radial solutions occurs when the
generating curve is not a graph on the r-axis, that is, it is a vertical straight-
line at r = r0. In such a case, the surface is a circular cylinder, hence K = 0
and H = 1/(2r0), obtaining the example of item (1). It only remains to notice
that from the solutions of (5), we deduce that k < 1 because |ar + k| < 1
and r > 0. In such a case, the description of item (2) is obvious by varying
k from 1 to −∞.

Figure 1: Radial solutions of the parabolic Weingarten equation.

In terms of surfaces of revolution, we conclude

Corollary 3.4. The rotational linear Weingarten surfaces of parabolic type
are circular cylinders, spheres, embedded tori of revolution and a 1-parameter
family of non-complete examples intersecting the rotation axis at cusp points
and whose profile curves are arcs of a circle of fixed radius.
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4. Existence of radial surfaces: elliptic case

In this last section we study (1) in the elliptic case. First, we prove
Theorem 1.1, whose formulation is stated again.

Theorem 4.1. If the equation in (3) is elliptic at r = 0, there is R > 0 such
that the initial value problem (3) has a solution in [0, R].

Proof. Multiplying (3) by r, it is immediate that we can write (3) as(
ru′√

1 + u′2

)′
+

b

2a

(
u′2

1 + u′2

)′
=
r

a
φ

(
1√

1 + u′2

)
.

Define the functions f, g : R→ R by

f(y) =
y√

1 + y2
, g(y) =

1

a
φ

(
1√

1 + y2

)
.

Now we write the above equation as

rf(u′) +
b

2a
f(u′)2 =

∫ r

0

tg(u′(t)) dt.

After solving f(u′) and eventually u′, we define the operator

(Tu)(r) =

∫ r

0

f−1

(
2a

b

(
−s+

√
s2 +

b

a

∫ s

0

tg(u′(t)) dt

))
ds.

It can be easily proved that u is a solution of the problem (3) if u is a fixed
point of the operator T. In this setting, we exhibit the existence of R > 0
such that T a contraction in the space C1([0, R]) endowed with the usual
norm ‖u‖ = ‖u‖∞ + ‖u′‖∞. Denote Lf−1 and Lg the Lipschitz constants of
f−1 and g in [−ε, ε], respectively, provided ε < 1. For all u, v ∈ C1([0, R]),
we have

‖Tu− Tv‖ = ‖Tu− Tv‖∞ + ‖(Tu)′ − (Tv)′‖∞,

We first study the term ‖Tu − Tv‖∞ because ‖(Tu)′ − (Tv)′‖∞ is similar.
Given two functions u, v in the ball B(0, ε) ⊂ (C1([0, R]), ‖ · ‖) and for all
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r ∈ [0, R], where R will be determined later, we have

|(Tu)(r)− (Tv)(r)| ≤∫ r

0

∣∣∣∣∣f−1
(

2a

b

(
−s+

√
s2 +

b

a

∫ s

0

tg(u′) dt

))
−

f−1

(
2a

b

(
−s+

√
s2 +

b

a

∫ s

0

tg(v′) dt

))∣∣∣∣∣ ds
≤ 2a

b
Lf−1

∫ r

0

∣∣∣∣∣
√
s2 +

b

a

∫ s

0

tg(u′) dt−

√
s2 +

b

a

∫ s

0

tg(v′) dt

∣∣∣∣∣ ds,
(6)

where Lf−1 stands for the Lipschitz constant of the function f−1. Using the
L’Hôpital rule, the behavior of the function

∫ s

0
tg(u′) dt at s = 0 comparing

with s2 is

lim
s→0

∫ s

0
tg(u′) dt

s2
= lim

s→0

sg(u′(s))

2s
=
φ(1)

2a
.

Therefore ∫ s

0

tg(u′) dt = c0s
2 + o(s2), c0 =

φ(1)

2a
.

Following the argument in (6),

|(Tu)(r)− (Tv)(r)|

≤ 2a

b
Lf−1

∫ r

0

∣∣∣∣∣
√
s2 +

b

a

∫ s

0

tg(u′) dt−

√
s2 +

b

a

∫ s

0

tg(v′) dt

∣∣∣∣∣ ds
= 2Lf−1

∫ r

0

|
∫ s

0
t(g(u′)− g(v′)) dt|√

s2 + b
a

∫ s

0
tg(u′) dt+

√
s2 + b

a

∫ s

0
tg(v′) dt

ds

≤ 2Lf−1

∫ r

0

∫ s

0
t|g(u′)− g(v′)| dt√

s2 + b
a

∫ s

0
tg(u′) dt+

√
s2 + b

a

∫ s

0
tg(v′) dt

ds.
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Now, using the Lipschitz constant Lg of g, we have

≤ 2Lf−1Lg

∫ r

0

∫ s

0
t|u′(t)− v′(t)| dt√

s2 + b
a

∫ s

0
tg(u′) dt+

√
s2 + b

a

∫ s

0
tg(v′) dt

ds

≤ Lf−1Lg‖u− v‖
∫ r

0

s2√
s2 + b

a

∫ s

0
tg(u′) dt+

√
s2 + b

a

∫ s

0
tg(v′) dt

ds

≤ Lf−1Lg‖u− v‖
∫ r

0

s√
1 + b

a

∫ s
0 tg(u′) dt

s2
+

√
1 + b

a

∫ s
0 tg(v′) dt

s2

ds.

Taking into account that
∫ s

0
tg(u′) dt = c0s

2 + o(s2), we follow the above
expression:

= Lf−1Lg‖u− v‖
∫ r

0

s ds√
1 + b

a
(c0 + o(1)) +

√
1 + b

a
(c0 + o(1))

.

Bearing in mind that since c0 = φ(1)/(2a) and

1 +
b

a
c0 =

1

2
+
a2 + bφ(1)

2a2
>

1

2
> 0,

we conclude that for r close to 0, the denominator in the above integral can
be upper bounded by a constant C > 0. Hence,

|(Tu)(r)− (Tv)(r)| ≤ CLf−1Lg‖u− v‖
∫ r

0

s ds = CLf−1Lg
r2

2
‖u− v‖.

Let R1 be sufficiently small such that the constant K1 = CLf−1LgR
2
1/2 is

less than 1. Then ‖Tu− Tv‖∞ ≤ K1‖u− v‖.
As we have said, a similar argument works with ‖(Tu)′ − (Tv)′‖∞. In

virtue of the definition of T,

(Tu)′(r) = f−1

(
2a

b

(
−r +

√
r2 +

b

a

∫ r

0

tg(u′(t)) dt

))
.
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Thus

|(Tu)′(r)− (Tv)′(r)|

≤ Lf−1

2a

b

∣∣∣∣∣
√
r2 +

b

a

∫ r

0

tg(u′(t)) dt−

√
r2 +

b

a

∫ r

0

tg(v′(t)) dt

∣∣∣∣∣
≤ Lf−1

2
∫ r

0
t|g(u′(t))− g(v′(t))|dt√

r2 + b
a

∫ r

0
tg(u′(t)) dt+

√
r2 + b

a

∫ r

0
tg(v′(t)) dt

.

Again, since g is Lipschitz,

≤ Lf−1Lg‖u− v‖
r2√

r2 + b
a

∫ r

0
tg(u′(t))dt+

√
r2 + b

a

∫ r

0
tg(v′(t))dt

= Lf−1Lg‖u− v‖
r√

1 + b
a

∫ r
0 tg(u′(t)) dt

r2
+

√
1 + b

a

∫ r
0 tg(v′(t)) dt

r2

≤ Lf−1Lg‖u− v‖
r√

1 + b
a
(c0 + o(1)) +

√
1 + b

a
(c0 + o(1))

≤ CLf−1Lg‖u− v‖r.

Let R2 > 0 be sufficiently small so the constant K2 = CLf−1LgR2 is less than
1. With this constant, if r ∈ [0, R2], we have ‖(Tu)′ − (Tv)′‖ ≤ K2‖u − v‖.
Finally, we now choose the value R as R = min{R1, R2}. Thus if r ∈ [0, R],
we have

‖Tu− Tv‖ < max{K1, K2}‖u− v‖,

proving that the operator T is contractible in C1([0, R]). This proves the
existence of a fixed point u ∈ C1([0, R]) ∩ C2((0, R]).

Finally, we prove that the solution u extends with C2-regularity at r = 0.
By taking limits as r → 0, and by L’Hôpital rule again on the quotient
u′(r)/r, we conclude

2au′′(0) + bu′′(0)2 = φ(1).

In this case,

u′′(0) =
−a±

√
a2 + bφ(1)

b
,

which has a solution by the elliptic condition a2 + bφ(1) > 0.
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Remark 4.2. In the proof of Theorem 4.1 we can relax the C1-regularity
of φ(y) to just being Lipschitz continuous around y = 1. Indeed, all the
arguments of the proof are local and one of the hypotheses needed is g(y) =

1
a
φ

(
1√
1+y2

)
to be Lipschitz around y = 0, i.e. φ(y) to be Lipschitz around

y = 1.

In the remaining of this paper we assume that the equation in (1) is
elliptic, i.e. a2 + bφ > 0 for every possible argument of the function φ. This
global elliptic condition will allow us to obtain results concerning the global
behavior of the solutions of equation (1).

First, we prove the uniqueness of the Dirichlet problem (1). Here we use
the comparison principle for fully nonlinear elliptic PDEs ([8, Th. 17.1]) to
the functional F which, in our context of Weingarten surfaces, asserts that if
u1 and u2 are two functions defined in Ω such that F[u1] ≥ F[u2] in Ω and
u1 ≤ u2 on ∂Ω, then u1 ≤ u2 in Ω. Furthermore, if F[u1] > F[u2] in Ω, then
u1 < u2 in Ω. Similarly the functional F satisfies a maximum principle in the
sense that if F[u1] = F[u2], u1 = u2 at some point x0 ∈ Ω and u1 ≥ u2 in an
open set of x0, then u1 = u2 in that open set.

We now prove the uniqueness of the Dirichlet problem (1) assuming ar-
bitrary continuous boundary values.

Proposition 4.3. Suppose that the equation in (1) is elliptic. If the Dirich-
let problem (1) has a solution for continuous boundary values u = ϕ on ∂Ω,
then the solution is unique.

Proof. The argument is standard using the comparison principle and the
fact the vertical translations of R3 are isometries that preserve the solutions
of (1). If u1 and u2 are two such solutions, we move the graph S1 of u1
downwards until that it does not intersect S2, the graph of u2. This is
possible because S1 and S2 are compact surfaces. Now we move S1 upwards
until reaching a first contact with S2. Then the (interior or boundary version
of the) maximum principle asserts that S1 = S2, that is, u1 = u2 in Ω.

We finish this section proving that in case that the equation (1) is elliptic,
the solutions of the Dirichlet problem (1) are radial if Ω is an Euclidean ball.
The method comes back to the known technique of moving planes. First, we
need the next result, which has its own interest.
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Proposition 4.4. Assume that the equation (1) is elliptic. If the Dirichlet
problem (1) has a solution u, then u has constant sign in Ω.

Proof. By contradiction, suppose that u changes of sign in Ω. Let x0, x1 ∈
Ω be the points where u attain its minimum and maximum and suppose
without loss of generality that u(x0) ≤ 0 < u(x1). In particular, Du(x0) =
Du(x1) = 0. Let v0, v1 : Ω → R be the constant functions defined by
v0(x, y) = u(x0) and v1(x, y) = u(x1). Since v0 ≤ u in a neighborhood
of x0 and u ≤ v1 around x1, and because the functional F is elliptic, the
comparison principle implies

F[v0] < F[u], F[u] < F[v1].

Since F[u] = 0 and F[v0] = F[v1] = −φ(1), we obtain a contradiction.

Once proved that the solution has sign in Ω, or equivalently, the surface
that determines lies completely at one side of the coordinate plane z = 0,
we can prove that if Ω is a round disc, then the solution of (1) is radially
symmetric, or equivalently, the surface is rotational about the z-axis. Here
we follow the moving plane method of Alexandrov ([1]), see also [7, 17]. The
arguments are standard and the key issue is that the equation is elliptic and
Proposition 4.4. We give a brief proof, stating the result in its more general
assumption of the domain Ω. In the next result, we will denote by (x1, x2, x3)
the coordinates of R3.

Theorem 4.5. Suppose that Ω ⊂ R2 is a bounded smooth domain, convex in
the x-direction and symmetric about the line x1 = 0. If (1) is of elliptic type,
then any solution u ∈ C2(Ω) of (1) with Dirichlet condition u = 0 along ∂Ω
is also symmetric about the line x1 = 0.

Proof. From Proposition 4.4 we know that u has constant sign. Without
loss of generality, we suppose that u < 0 in Ω. Since the function φ depends
on 1/

√
1 + |Du|2 (or φ = φ(〈N, v〉) in (2)), then the reflections about a

vertical plane of a surface that satisfies the Weingarten equation (2) are
surfaces satisfying the same equation.

For t ≤ 0, let Ωt = Ω ∩ {x1 ≤ t}. If A ⊂ R2, with the notation A∗

we stand for the reflection of A about the line of equation x1 = t, that is,
A∗ = {(2t− x1, x2) : (x1, x2) ∈ A}. Define on Ω∗t the function ut obtained by
reflection about the line x1 = t, ut(x1, x2) = u(2t− x1, x2). Then ut satisfies
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(1) in Ω∗t . We begin with the method of moving planes doing reflection about
the line x1 = t for t near −∞. Since Ω is bounded and after the first touching
point t1 < 0 with ∂Ω, we have u < ut in Ωt for t ∈ (t1, t1 + ε) for some ε > 0
sufficiently small. Moving t↗ 0, and by the compactness of Ω, let

t0 = sup{t < 0 : u < ut in Ω∗t}.

If t0 < 0 and because (∂Ωt ∩ ∂Ω)∗ ⊂ Ω, u < 0 in Ω and the convexity of Ω
in the x1-direction, there is x0 ∈ Ω∗t such that u = ut0 at x0. Since u ≤ ut0
and F[u] = F[ut0 ] in Ω∗t0 , then u = ut0 by the maximum principle. Using
an argument of connectedness, this implies that the line x1 = t0 is a line of
symmetry of u, which it is false because Ω∗t0 ∪ Ωt0 6= Ω.

Thus t0 = 0 and u < ut in Ω∗t for all t < 0. By the symmetry of Ω with
respect to the line x1 = 0, there is x0 ∈ ∂Ω∗0∩∂Ω such that u(x0) = u0(x0) =
0. Using the maximum principle of elliptic equations in its boundary version,
we conclude that that u = u0 in Ω ∩ Ω∗0, proving the result.

As consequence of this theorem, together with Theorem 4.1 and Propo-
sition 4.3, we conclude the following consequence.

Corollary 4.6. Assume that the equation (1) is elliptic. Then there is R > 0
such that the Dirichlet problem (1) in the ball B(0, R) has a unique solution.
Moreover, this solution is radial.

Acknowledgments
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[13] F. Morabito, M. M. Rodŕıguez, Classification of rotational special Wein-
garten surfaces of minimal type in H2 × R and S2 × R. Math. Z. 273
(2013), 379–399.

[14] F. Obersnel, P. Omari, Revisiting the sub-and super-solution method
for the classical radial solutions of the mean curvature equation. Open
Math. 18 (2020), 1185–1205.

[15] H. Rosenberg, R. Sa Earp, The geometry of properly embedded special
surfaces in R3, e.g., surfaces satisfying aH + bK = 1, where a and b are
positive. Duke Math. J., 73 (1994), 291–306.

16



[16] R. Sa Earp et E. Toubiana, Classification des surfaces de type Delaunay
et applications. Amer. J. Math. 221 (1999), 671–700.

[17] J. Serrin, A symmetry problem in potential theory. Arch. Ration. Mech.
Anal. 43 (1971), 304–318

[18] J. Urbas, An expansion of convex hypersurfaces. J. Differential Geom.
33 (1991), 91–125.

17


	1 Introduction
	2 Types of Weingarten equations
	3 Radial solutions: hyperbolic and parabolic type
	4 Existence of radial surfaces: elliptic case

