Chaos and thermalization in a classical chain of dipoles
Metadata
Show full item recordEditorial
American Physical Society
Date
2022-07-27Referencia bibliográfica
Manuel Iñarrea, Rosario González-Férez, J. Pablo Salas, and Peter Schmelcher. Chaos and thermalization in a classical chain of dipoles. Phys. Rev. E 106, 014213 [https://doi.org/10.1103/PhysRevE.106.014213]
Sponsorship
Andalusian Research Group FQM-207; ERDF-University of Granada; FEDER-MINECO UNLR-094E-2C-225; Ministerio de Economía y Competitividad PID2020-113390GB-I00, PY20-00082; Junta de Andalucía A-FQM-52-UGR20Abstract
We explore the connection between chaos, thermalization, and ergodicity in a linear chain of N interacting dipoles. Starting from the ground state, and considering chains of different numbers of dipoles, we introduce single site excitations with excess energy ΔK. The time evolution of the chaoticity of the system and the energy localization along the chain is analyzed by computing, up to a very long time, the statistical average of the finite-time Lyapunov exponent λ(t) and the participation ratio Π(t). For small ΔK, the evolution of λ(t) and Π(t) indicates that the system becomes chaotic at approximately the same time as Π(t) reaches a steady state. For the largest considered values of ΔK the system becomes chaotic at an extremely early stage in comparison with the energy relaxation times. We find that this fact is due to the presence of chaotic breathers that keep the system far from equipartition and ergodicity. Finally, we show numerically and analytically that the asymptotic values attained by the participation ratio Π(t) fairly correspond to thermal equilibrium.