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Chaos and thermalization in a classical chain of dipoles
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We explore the connection between chaos, thermalization, and ergodicity in a linear chain of N interacting
dipoles. Starting from the ground state, and considering chains of different numbers of dipoles, we introduce
single site excitations with excess energy �K . The time evolution of the chaoticity of the system and the energy
localization along the chain is analyzed by computing, up to a very long time, the statistical average of the
finite-time Lyapunov exponent λ(t ) and the participation ratio �(t ). For small �K , the evolution of λ(t ) and
�(t ) indicates that the system becomes chaotic at approximately the same time as �(t ) reaches a steady state.
For the largest considered values of �K the system becomes chaotic at an extremely early stage in comparison
with the energy relaxation times. We find that this fact is due to the presence of chaotic breathers that keep the
system far from equipartition and ergodicity. Finally, we show numerically and analytically that the asymptotic
values attained by the participation ratio �(t ) fairly correspond to thermal equilibrium.
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I. INTRODUCTION

The relationship between chaos, thermalization, and ergod-
icity in Hamiltonian systems with a large number of degrees
of freedom is a topic of intense research with many intriguing
open questions. Historically it was the pioneering study of
Fermi, Pasta, Ulam, and Tsingou (FPUT) in 1953 [1,2], that
initiated and opened up this field of research. Indeed, for a
chain of nonlinear oscillators excited out of the equilibrium,
FPUT found that the expected energy equipartition was not
reached. Instead, they observed quasiperiodic energy recur-
rences, which are more likely to occur in integrable systems.
Today, we know that these recurrences appear because the ini-
tial conditions used by FPUT were chosen near time-periodic
solutions showing a strong energy localization in the normal
mode space (q-breathers) [3–5]. Since then, the possibility
that even in weakly nonlinear Hamiltonian systems, thermal-
ization might not occur or be extremely slow due to the
spontaneous appearance of nonergodic local fluctuations is a
legitimate point of view.

In complex Hamiltonian systems, the unpredictable na-
ture of a chaotic orbit might suggest that the corresponding
dynamics is ergodic and therefore such an orbit describes a
thermalized system. The later implies that the chaotic tra-
jectory is able to explore all of the available phase space.
However, the combined results of the Kolmogorov-Arnold-
Moser (KAM) [6–9] and the Nekhoroshev [10] theorems state
that, in all weakly perturbed integrable systems it is always
possible to find orbits that remain trapped close to regular
phase space regions up to very long times. Furthermore, the
remaining chaotic regions are connected due to Arnold dif-
fusion, which means that, regardless of the time spent, every

chaotic orbit will eventually visit every chaotic phase space
region. Even though it is commonly accepted that the size
of the regular islands (e.g., the KAM regime) vanishes very
fast, even exponentially, for increasing number of degrees of
freedom [11], ergodicity, and thermalization can only be fully
developed in strongly perturbed Hamiltonian systems where
there are (almost) no regular islands and phase space is then
dominated by global chaos.

As a consequence, although chaos always appears as the
fundamental precursor of thermalization in nonlinear lattices
[12–21], we also know that chaotic behavior is not always
a sufficient condition to assert that a given orbit has also
reached the thermalization regime [17,19,22,23]. In fact, in
Refs. [17,18,20,21,24,25] we can find examples of nonlin-
ear lattices where the time needed by the system to become
chaotic is much shorter than the ergodization time. In all those
systems, the large difference between the two timescales is
due to the presence of chaotic breather-like excitations.

In this way, the main goal of this paper is to provide more
insight on a fundamental question such as the connection
between chaos, thermalization and ergodicity. To this end,
we use a linear chain of N identical rigid interacting dipoles.
Starting with the system in its ground state (GS), a certain
amount of energy �K is given to one of the dipoles, and we
explore the transport of that excess energy with increasing
time evolution. To detect chaos, we compute the maximal
Lyapunov exponent λ1 [26–28], being the limit t → ∞ of the
finite-time Lyapunov exponent

λ(t ) = 1

t
log

‖w(t)‖
‖w(0)‖ , (1)

2470-0045/2022/106(1)/014213(9) 014213-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2859-1116
https://orcid.org/0000-0002-8871-116X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.014213&domain=pdf&date_stamp=2022-07-27
https://doi.org/10.1103/PhysRevE.106.014213


MANUEL IÑARREA et al. PHYSICAL REVIEW E 106, 014213 (2022)

i+2θ
X

Z
a

i+1θiθi_1θi_2θ

FIG. 1. Schematic representation of the dipole chain.

where w(0) and w(t) are the deviation vector of a given
trajectory at t = 0 and t > 0. The determination of λ(t ) is
a common tool to estimate whether an orbit is chaotic or
not. For a regular orbit it tends to zero as λ(t ) ∼ t−1, while
for chaotic orbits it reaches asymptotically a nonzero value.
The inverse τ = 1/λ1 is the so-called Lyapunov time, which
quantifies the time needed for the system to become chaotic.
To measure the degree of equipartition of the initial excitation
�K , we use the (normalized) participation ratio �(t ) [29,30]

�(t ) = 1

N − 1

[
�K2∑N

k=1 Ek (t )2
− 1

]
, (2)

with Ek (t ) being the local energy stored in each dipole, that
will be defined below. The energies �K and Ek are taken with
respect to the GS energy. When the excitation is completely
localized, carried by a single dipole, the value of �(t ) is zero,
while if there is complete equipartition �(t ) = 1. When the
system at hand is ergodic and fully chaotic, the equilibrium
value of �(t ) can be computed as its average 〈�〉 using the
Boltzmann distribution.

The paper is organized as follows. In Sec. II we present the
Hamiltonian of the system, and a short discussion of the most
relevant equilibrium configurations is provided. Starting from
the GS, in Sec. III we follow the long-term time evolution of
an initially localized excitation. In particular, we compute the
averaged finite-time Lyapunov exponent λ(t ) and the averaged
participation ratio �(t ) for different excitation values. These
quantities provide information concerning the chaoticity of
the system, as well as the degree of thermalization of the
dipole chain. In Sec. IV, we apply the Boltzmann statistics to
determine the thermal equilibrium values of �(t ). We find a
very good agreement between the thermal equilibrium values
of �(t ) and the numerically calculated asymptotic values of
the averaged �(t ), which indicates that the system has ap-
proximately reached thermal equilibrium.

II. HAMILTONIAN AND EQUILIBRIUM
CONFIGURATIONS

The dipoles are fixed in space along the X -axis of the
Laboratory Fixed Frame XY Z with a distance a between
two consecutive dipoles. They are restricted to rotate in the
common XZ plane (see Fig. 1). Thence, the dipole moment
of each rotor is given by the vector μi = μo(cos θi, 0, sin θi ),
where 0 � θi < 2π is the angle between the dipole moment
μi and the X axis, with i = 1, . . . , N .

Assuming periodic boundary conditions (PBC) and only
interactions between nearest neighbors, the rotational dynam-
ics of the system, as a function of the phases θi, is described

by the following dimensionless Hamiltonian:

H =
N∑

i=1

p2
i

2
+ V (θ1, . . . , θN ), (3)

where pi = dθi/dt and V = V (θ1, . . . , θN ) is the potential
energy surface of the chain given by

V =
N∑

i=1

Vi =
N∑

i=1

(sin θi sin θi+1 − 2 cos θi cos θi+1). (4)

The energy E = H in Eq. (3) is measured in units of
Bχ , where B = h̄2/2I is the molecular rotational constant
of the dipoles, and χ = μ2

o/(4πε0a3B) is the dimensionless
dipole-dipole interaction parameter in units of B. In this for-
mulation, the new dimensionless time is t ′ = √

χ t/tB with
tB = h̄2/

√
2B. For more information about this reduction, we

refer the reader to Ref. [30].
The GS of the system corresponds to the so-called head-tail

configuration {θi = 0,∀i} or {θi = π,∀i}. The minimal energy
of these equilibria is Em = −2N . Besides the GS configura-
tion, the resulting Hamiltonian equations of motion provide
us with two families of equilibria that give rise to a com-
plex choreography of equilibrium configurations. One of the
families is made of alternating blocks of arbitrary number of
dipoles, where all dipoles belonging to the same block are
either oriented with angles 0 or π . The other family is also
made of alternating blocks of arbitrary number of dipoles, but
now with all dipoles belonging to the same block either ori-
ented with angles π/2 or −π/2. Determining the nature of the
equilibrium configurations involves obtaining the eigenvalues
of the stability matrix associated to Eq. (3) and it has been
achieved in Ref. [30]. Here, we focus on the degenerate set
of equilibria given by only one dipole flipped with respect
to the GS configuration. Naming these equilibria as S, their
energy is Es = 8 − 2N , and they are saddle points. They are
the equilibria with the closest energy to the GS. Furthermore,
the energy gap between the GS and S is �s = Es − Em = 8,
which does not depend on the chain size. These equilibria S
play a very important role in the dynamics because, for energy
values below Es, the phase space trajectories of the system
remain trapped around the GS. Conversely, for E > Es, larger
phase space regions are accessible for the trajectories, which
involve also different equilibria. Then, a stronger nonlinear
dynamics is expected to take place. Hereafter the energy of
the system will be taken with respect to the GS energy, i.e.,
the total energy of the system will be shifted by Em = −2N .

III. EXCITATION DYNAMICS

As we mentioned before, starting form the head-tail con-
figuration of minimal energy Em, we excite at t = 0 a single
dipole with an excess energy �K . We use chains between
N = 100 and N = 400 dipoles. Because PBC are assumed,
without loss of generality, we excite the central dipole N/2 of
the lattice. Then, the initial conditions (i.c.) of the system are

θi(0) = pi(0) = 0, ∀ i �= N/2,

�K = pN/2(0)2

2
+ 4[1 − cos θN/2(0)]. (5)
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Because the energy gap �s = 8 between the GS and the
saddle point configurations S does not depend on the chain
size, we provide the �K values in terms of that gap. Then,
because �s is N-independent, for a given value of �K , the
larger the system’s size is, the smaller the energy per dipole
(energy density) ε = �K/N is. In general, the influence of
the system’s size on the dynamics has been studied keeping ε

constant and varying N (see, e.g., Refs. [13,31]).
For particular values of �K , we estimate λ(t ) and �(t )

by the simultaneous numerical integration of the Hamiltonian
equations of motion arising from Eq. (3) and the correspond-
ing variational equations. More specifically, for each value of
�K , λ(t ) and �(t ) are statistically determined by averaging
over 20 different realizations compatible with the i.c. (5). For
the numerical integration of the equations of motions we used
the SABA2 symplectic integrator [17,32] with fixed integra-
tion time step. On the other side, the numerical integration of
the variational equations has been performed using a tangent
map extension [33–35] of the SABA2 algorithm. We use an
integration time step h = 0.1 which keeps the relative energy
error less than 10−4. Because the computations of λ(t ) [and so
�(t )] require very long integration times, the code has been
parallelized. To define the local energies Ek (t ) appearing in
Eq. (2), we divide the potential energy in the Hamiltonian
(3) between neighboring sites equally upon the involved sites
(see, e.g., Refs. [30,36]), such that

Ek (t ) = pk (t )2

2
+ Uk (θk−1, θk, θk+1), (6)

where the local potential Uk (θk−1, θk, θk+1) is given by

Uk (θk−1, θk, θk+1) = 1
2 {sin θk (t )[sin θk+1(t ) + sin θk−1(t )]

− 2 cos θk (t )[cos θk+1(t )

+ cos θk−1(t )]} + 2. (7)

We have performed simulations for six excitations with
excess energy �K below the energy gap �s, and two exci-
tations with �K above �s, namely, for �K = 0.05�s, 0.1�s,
0.25�s, 0.5�s, 0.75�s, 0.9�s, 1.1�s, and 1.25�s. Note that,
when these excitations are below the energy gap �s, the
dipoles cannot perform complete rotations. For the compu-
tation of λ(t ) we need to choose an initial deviation vector
w(0). Although all choices of w(0) will converge to the same
maximal Lyapunov exponent λ1, not all of them will do it
at the same rate. A thorough discussion with regard to this
subject can be found in Refs. [37,38]. Because a random
choice of w(0) is very common, in our case we take w(0)
as a 2N normalized vector with uniformly distributed random
entries.

A. Chaotic behavior of the dipole chain

For fixed values of N and �K , the averaged finite-time
Lyapunov exponent λ̂(t ) will be statistically estimated by
averaging over the 20 values {λi(t ), i = 1, .., 20}, where λi(t )
is the finite-time Lyapunov exponent of an orbit with initial
conditions compatible with Eq. (5). As examples, the aver-
aged finite-time Lyapunov exponent λ̂(t ) for three chains with
N = 100, N = 200, and N = 400 and for the above excita-
tions are shown in Figs. 2(a)–2(c) on a double logarithmic
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FIG. 2. (a)–(c) Computed average λ̂(t ) for eight excess energies
along with some error bars (standard deviation) for chains with N =
100, N = 200, and N = 400 dipoles, respectively. The red dashed
line guides the eye for the −1 slope, which marks the expected
λ(t ) ∼ t−1 behavior for regular orbits. (d) Time evolution of the
finite-time Lyapunov exponent of each of the 20 initial conditions
(gray lines), the corresponding averaged finite-time Lyapunov expo-
nent λ̂(t ) (color lines) and some error bars for a chain of N = 100
dipoles and for the excess energies �K = 0.05�s, 0.25�s, 0.75�s,
and 1.25�s.

scale. Some error bars computed as the standard deviation are
also presented in this figure. In all cases, the small size of the
error bars indicate that, in the long term, λ̂(t ) is insensitive to
the choice of the initial conditions. This fact can be clearly
observed in Fig. 2(d) where we illustrate in detail the compu-
tational procedure for λ̂(t ) for a chain with N = 100 dipoles
and for �K = 0.05�s, 0.25�s, 0.75�s, and 1.25�s. For each
�K , Fig. 2(d) shows the finite-time Lyapunov exponent of
each of the 20 initial conditions (gray lines), the correspond-
ing averaged finite-time Lyapunov exponent λ̂(t ) (color lines)
and some error bars. From a statistical point of view, for each
value of �K , we observe that the values of λi(t ) tend to
stabilize around the same limiting value. Assuming that this
limiting value is the maximal time Lyapunov exponent λ1,
we conclude that, in all cases, the value of λ1 do not depend
on the choice of the initial conditions. In other words, for a
given �K value, the chaotic behavior of the chain would be
characterized by a single λ1.

In all cases, we observe that the time evolution of λ̂(t )
qualitatively shows always the same behavior. Indeed, after
the system is excited, there is a transient during which λ̂(t )
decreases in time. After that transient, there is a crossover
to a plateau, and the corresponding value of the maximal
Lyapunov exponent λ1 is taken on. However, the timescales
in the behavior of λ̂(t ) are very different and depend on the
value of �K . The larger the excess energy �K is, the shorter
the transient is, and the larger the value λ1 is. This hierarchy in
the decay patterns of λ̂(t ) (and so in the values of λ1) observed
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TABLE I. Values of the maximal Lyapunov exponent λ1 obtained for five chains of N = 100, 150, 200, 300, and 400 dipoles, and for the
eight considered excess energies �K . For each �K , the value of λ1 has been obtained by averaging the corresponding λ̂(t ) for time beyond
t = 5 × 108. The numbers in parentheses are powers of 10.

N = 100 N = 150 N = 200 N = 300 N = 400

�K = 0.05�s 8.883 (−6) 6.150 (−6) 3.962 (−6) 2.336 (−6) 1.485 (−6)
�K = 0.1�s 2.849 (−5) 1.798 (−5) 1.201 (−5) 6.984 (−6) 4.777 (−6)
�K = 0.25�s 1.371 (−4) 8.002 (−5) 5.482 (−5) 3.131 (−5) 2.112 (−5)
�K = 0.5�s 4.247 (−4) 2.457 (−4) 1.650 (−5) 9.407 (−5) 6.330 (−5)
�K = 0.75�s 7.331 (−4) 4.067 (−4) 2.678 (−4) 1.495 (−4) 9.915 (−5)
�K = 0.9�s 9.950 (−4) 5.303 (−4) 3.302 (−4) 1.765 (−4) 1.201 (−4)
�K = 1.1�s 1.572 (−3) 8.761 (−4) 5.717 (−4) 2.7617 (−4) 1.732 (−4)
�K = 1.25�s 1.928 (−3) 1.017 (−3) 6.260 (−4) 2.966 (−4) 1.855 (−4)

in of Fig. 2 is the manifestation of an increasingly chaotic
dynamics for increasing values of �K .

After the system is excited with small and medium excess
energies (i.e., for �K = 0.05�s, 0.1�s, 0.25�s, 0.5�s), the
corresponding decay pattern of λ̂(t ) (see Fig. 2) closely fol-
lows the well-known power law λ̂(t ) ∼ t−1 of regular orbits.
Then, at a given time, λ̂(t ) deviates from the regular behavior,
and it tends to converge to a nonzero value which is the
corresponding maximal Lyapunov exponent λ1. This behavior
reveals the chaotic nature of the excitations even for very
small values of �K , and has been already found in different
kinds of lattices such as the FPUT problem [13,31,39], dis-
ordered lattices [17,19], or in the Bose-Hubbard model [14].
In all these systems, including our dipole chain, a possible
explanation of the decay pattern of λ̂(t ) could be the existence
of areas close to regular regions in phase space where, after the
initial excitation, the trajectory remains trapped, possibly for
a long but finite time (given by τ = 1/λ1), before entering the
chaotic component of the phase space. As it was pointed out
in Refs. [13,39], this behavior is theoretically sustained in the
KAM and Nekhoroshev theorems [6–10]. For �K = 0.75�s,
the regular decay of λ(t ) reduces to a very short time after the
excitation, so that for larger values of the excess energy, no
trace of regular behavior can be found in the time evolution of
λ̂(t ).

From the above discussion, whenever λ̂(t ) has reached the
plateau, we can estimate the averaged maximal time Lya-
punov exponent λ1 by simply averaging in time the values
of λ̂(t ). Thus, for five chains of N = 100, 150, 200, 300, and
400 dipoles, and for the eight considered excess energies �K ,
we average λ̂(t ) for time beyond t = 5 × 108. The obtained
values of λ1 are given in Table I. Furthermore, the linear
behavior of λ1 as a function of the energy density ε = �K/N
shown on a double log scale in Fig. 3 suggests a power law

λ1 ∼ εa. (8)

The least-squares fit, see Fig. 3, revels a weak dependence of
the exponent a on N . For large N , a is expected to converge
to an asymptotic value [31], which is not yet obtained for the
N = 400 chain analyzed here. It is important to notice that,
from the values of λ1 in Table I, there is a fast decrease of
τ = 1/λ1 for increasing �K , which indicates that, for low
excitations, the system has difficulties to find the gateway to
escape from the sticky quasiregular phase space regions to the

nonregular counterpart. In addition, an increase in the excess
energy would also lead to a global faster dynamics.

B. Energy equipartition and thermalization of the dipole chain

Regarding the energy equipartition attained by the system,
we ilustrate in Fig. 4 the time evolution of the averaged partic-
ipation ratio �̂(t ) for the same eight excess energies �K and
for N = 100, N = 200, and N = 400. We observe that, for
small excess energies (�K � 0.25�s), there is a short tran-
sient (t � 400) during which a fast spreading of the excitation
takes place. After that transient, we always find that �̂(t )
fluctuates around a constant value. As we can see in Fig. 4,
these asymptotic values are rapidly reached for t � 4 × 102,
and the amplitudes of the fluctuations around them decrease
with increasing time. Comparing the time evolutions of �̂(t )
and λ̂(t ), depicted in Figs. 4 and 2, we can see that, for small
excess energies, the participation ratio �̂(t ) takes its asymp-
totic values and the system reaches thermalization when it still
exhibits regular behavior because λ̂(t ) has not yet deviated
from the power law λ̂(t ) ∼ t−1. For N = 100, 150, 200, 300,

and 400, the asymptotic values, calculated as the average

N=100 a=1.658

N=150 a=1.577

N=200 a=1.566

N=300 a=1.492

0.001 0.005 0.010 0.050 0.100

5×10-6

10-5

5 ×10-5

10-4

5×10-4

10-3

N=400 a=1.479

FIG. 3. Maximal Lyapunov exponent λ1 as a function of the
energy density ε = �K/N for dipole chains with N = 100, 150, 200,
300, and 400. Note that a double logarithmic scale is used. The values
of a are the exponents that, for each N , are obtained from the fittings
of the pairs (ε, λ1) to the power law of Eq. (8).
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FIG. 4. Time averaged participation ratio �̂(t ) for eight excess energies. The horizontal dashed lines mark the equilibrium values 〈�〉
assuming that it follows a Boltzmann distribution for the local energies. Chains with (a) N = 100, (b) N = 200, and (c) N = 400 dipoles are
considered.

for time beyond t = 106 of the values of �̂(t ) for �K =
0.05�s, 0.1�s, and 0.25�s, are �̂ ≈ 0.5923, 0.5915, 0.5903,
0.5890, and 0.5883, respectively, which indicates that inde-
pendent of N and for small values of �K , the system always
reaches approximately the same degree of equipartition.

For larger excess energies, the fast initial transient in the
averaged participation ratio described for small �K values is
gradually replaced by a slower increase, such that �̂(t ) even-
tually reaches asymptotic values slightly smaller than those
obtained for small �K . Note that, for the largest excitations,
it takes times t � 108 for �̂(t ) to reach these constant values.

The very long relaxation times for the largest values of
�K indicate that, despite its chaotic dynamics and before
�̂(t ) reaches the asymptotic values, the chain exhibits a
long-lasting nonergodic phase. Recent studies of the FPUT,
Gross-Pitaevskii, and Klein-Gordon lattices [18,20,40,41]
show that this nonergodic behavior is associated with the
presence of robust breather excitations that prevent the sys-
tem from reaching equipartitioning. For a chain of N = 200
dipoles, the color maps of Figs. 5(a) and 5(b) show the time
evolution of the local energies Ek (t ) [see Eq. (6)] of two exci-
tations with �K = 1.1�s, but with different initial conditions
θ100 ≈ 0.6614 and θ100 ≈ 0.8267 and with the momenta p100

according to Eq. (5). For the excitation depicted in Fig. 5(a),
we observe for an early time interval t � 104 the presence of
two chaotic breathers, such that most of the energy of the sys-
tem is strongly localized in a few energy carriers (dipoles) that
follow complex trajectories. For t � 104, the chaotic breathers
collapse into a single excitation mainly localized at the central
dipoles. Finally, for t � 3 × 106, this central breather disap-
pears and the energy appears to be broadly distributed among
all the dipoles. In other words, in this case the energy transfer
in the lattice is to a large extent determined by the presence of
breathers [12] that, for a fairly long time period, keep the sys-
tem far from equipartition, and exhibiting a persistent noner-
godic dynamics. However, Fig. 5(b) indicates that the energy
transfer mechanism of the second excitation scheme is com-
pletely different. No breather formation is observed, and even
on short timescales the energy is fairly distributed among all
the dipoles. Furthermore, the different profiles of the time evo-
lution of the local energy observed in Figs. 5(a) and 5(b) are
reflected in the evolution of the corresponding participation

ratio �(t ). Indeed, while �(t ) for the excitation scheme de-
picted in Fig. 5(b) reaches fluctuating values around a constant
nonzero value when t � 105 [see the blue line in Fig. 5(c)], we
have to wait up to t � 3 × 106 to find a similar behavior for
the evolution of �(t ) for the excitation scheme depicted in
Fig. 5(a) [see the red line in Fig. 5(c)]. Finally, the behavior
shown in Fig. 5 indicates that, besides the amount of the ex-
cess energy �K , the energy transfer mechanism is highly de-
pendent on how �K is supplied to the system, i.e., it depends
on the initial conditions of the excited dipole. As a conse-
quence, a statistical approach is necessary to obtain a general
global picture of the energy transfer in the dipole chain.

Thus, we find that breathers are local hot spots that de-
stroy the global ergodic dynamics and therefore prevent the
thermalization of the system. It is worth noticing that this
nonergodic dynamics coexists together with the global chaotic
behavior that follows from the nonzero values of the maximal
Lyapunov exponent λ1. This fact ultimately implies the lack
of sensitivity of λ1 to detect the presence of breathers, and
thence to predict thermalization [19]. In other words, although
the statistical character of λ1 indicates that the system exhibits
a global chaotic behavior, we can not use it to assure ergodic
dynamics. A similar behavior, named as weakly nonergodic
dynamics, was found by Mithun et al. [20] in a Gross-Pitaevkii
lattice.

IV. THE DIPOLE CHAIN AS A CANONICAL ENSEMBLE:
EQUILIBRIUM VALUE OF �(t )

For the considered chains of N = 100, 150, 200, 300, and
400 dipoles, the asymptotic values of the averaged participa-
tion ratio indicate a degree of thermalization far below the
complete energy equipartition regime, for which the partici-
pation ratio takes its maximum value �(t ) = 1 [see Eq. (2)].

At this point, we pose the question of whether the asymp-
totic values observed in Fig. 4 indicate that the chains are in a
fairly thermalized regime. Indeed, a numerical estimate of the
equilibrium value of �(t ) can be obtained in the following
way. Taking into account the participation ratio Eq. (2), the
estimate of its equilibrium value can be determined using the
mean values of the local energy 〈Ek〉 and the squared local
energy 〈E2

k 〉 at equilibrium. Assuming that the system has

014213-5



MANUEL IÑARREA et al. PHYSICAL REVIEW E 106, 014213 (2022)

Si
te

Si
te

t

t

t

(c)

(a)

(b)

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

FIG. 5. Color maps showing the time evolution of the local ener-
gies Ek (t ) [see Eq. (6)] for a chain with N = 200 and �K = 1.1�s

but with different initial conditions θ100 ≈ 0.6614 [map (a)] and
θ100 ≈ 0.8267 [map (b)], and with the corresponding momenta p100

according to Eq. (5). Panel (c) shows the participation ratio �(t )
corresponding to the trajectories of the color maps (a) (red color)
and (b) (blue color). The horizontal dashed line in panel (c) marks
the equilibrium value 〈�〉 assuming that it follows a Boltzmann
distribution for the local energies.

a large number of dipoles and that its dynamics is ergodic,
the distribution of the local energies Ek (t ) [see Eq. (6)] of
the dipoles is governed by a Boltzmann distribution. Similar
approaches have been carried out in different kinds of lattices
as the FPUT [18,42], the sine-Gordon [43], the Klein-Gordon
[18], and the Gross-Pitaevskii [44–46]. Then, the partition
function Z is given by

Z =
∫




exp[−H(
)/T ]d
, (9)

where 
 are the 2N phase variables appearing in the Hamil-
tonian H in Eq. (3), and T is the temperature of the system
at equilibrium. Thus, the mean values of the local energy 〈Ek〉
and of the squared local energy 〈E2

k 〉 at equilibrium can be
computed as

〈
Ei

k

〉 = 1

Z

∫



Ei
k (θk−1, θk, θk+1, pk )

× exp[−H(
)/T ] d
, i = 1, 2. (10)

Due to the separability between the kinetic and the potential
terms in H, these mean values can be written as

〈Ek〉 = T

2
+

∫

θ

Uk exp[−V/T ]d
θ∫

θ

exp[−V/T ] d
θ

, (11)

〈
E2

k

〉 = 3T 2

4
+

∫

θ

(
T Uk + U 2

k

)
exp[−V/T ] d
θ∫


θ
exp[−V/T ]d
θ

, (12)

where d
θ = dθ1...dθN , and V = V (θ1, ..., θN ) and Uk =
Uk (θk−1, θk, θk+1) are defined in Eqs. (4) and (7), respectively.
Assuming that �K = ∑N

k=1 Ek = N〈Ek〉 and
∑N

k=1 E2
k =

N〈E2
k 〉, the participation ratio � at the equilibrium is given

by

〈�〉 = RN − 1

N − 1
, (13)

where R = 〈Ek〉2/〈E2
k 〉.

To obtain the expressions of 〈Ek〉 and 〈E2
k 〉, we have to

calculate numerically the integrals in Eqs. (11) and (12) for
different temperatures T and for chains with different num-
bers N of dipoles. We expect the values of T are in a range of
temperatures that corresponds to the excess energy �K added
to the system. Thus, a suitable upper limit of the temperature
is estimated using the equipartition theorem in the following
way. Taking into account the boundedness of the potential
energy Eq. (4) of the system, we can assume that, for large
enough values of �K , to a certain approximation the system
takes the excess energy increasing only its kinetic energy. As
a result, in a perfect energy equipartition regime, the mean
value of the kinetic energy of each dipole is �K/N = T/2,
which provides an approximate value for the temperature T .
Hence, taking into account the different chains and values of
�K considered in these study, the upper limit for T would
correspond to the case of a chain with N = 100 and an excess
energy �K = 1.25�s, which yields a upper limit of T = 0.2.
For many-degrees of freedom systems as the dipole chain
considered here, the numerical computation of the integrals
in Eqs. (11) and (12) should be performed by using a Monte
Carlo method (MCM) [47]. However, even for the smallest
chain with N = 100 dipoles considered in this work, the
convergence of the MCM when applied to the integrals in
Eqs. (11) and (12) is extremely slow, such that the algorithm
does not provide accurate results.

To circumvent the curse of dimensionality, we assume
that, since the local potential Uk = Uk (θk−1, θk, θk+1) only
involves the nearest neighbors of the dipole k, a first estimate
of Eqs. (11) and (12) could be obtained by neglecting the

014213-6



CHAOS AND THERMALIZATION IN A CLASSICAL CHAIN … PHYSICAL REVIEW E 106, 014213 (2022)

TABLE II. Values of the parameter R [see Eq. (13)] for temper-
atures T ranging between 0.1 and 0.2. Labels NN, SN, TN and FN
indicate that the calculations have been extended to nearest, second,
third, and fourth neighbors, respectively.

T = 0.1 T = 0.12 T = 0.14 T = 0.16 T = 0.18 T = 0.2

NN 0.643 0.643 0.643 0.643 0.644 0.644
SN 0.600 0.601 0.601 0.602 0.602 0.603
TN 0.595 0.595 0.596 0.596 0.597 0.597
FN 0.596 0.594 0.596 0.595 0.595 0.596

coupling to the dipoles with i > k + 1 and i < k − 1. Thus,
the corresponding mean values read

〈Ek〉 ≈ T

2
+

∫

k

Uk exp[−Vk/T ]dθk−1dθkdθk+1∫

k

exp[−V/T ]dθk−1dθkdθk+1
, (14)

〈
E2

k

〉 ≈ 3T 2

4
+

∫

k

(
T Uk + U 2

k

)
exp[−Vk/T ] dθk−1dθkdθk+1∫


k
exp[−Vk/T ]dθk−1dθkdθk+1

.

(15)

Therefore, we are actually assuming that the chain is uncou-
pled beyond nearest neighbors and, for a given temperature
T , the three-dimensional integrals in Eqs. (14) and (15) can
be easily computed.

This approximation can be improved by progressively in-
cluding the interactions with further neighbors, such that, at
a given order converged results for Eqs. (11) and (12) are
obtained. We show in Table II, for different values of T , the
values of factor R, Eq. (13), obtained up to nearest, second,
third, and fourth neighbors. These results in Table II have been
computed using an adaptative MCM, and more specifically
the VEGAS algorithm [47,48]. As we can observe in Table II,
for all the values of T and up to third neighbors, we obtain for
R ≈ 0.59. Therefore, we conclude that up to four neighbors,
the equilibrium value of the participation ratio can be approx-
imated by

〈�〉 = R N − 1

N − 1
≈ 0.595N − 1

N − 1
. (16)

For the considered chains with N = 100, 150, 200, 300, and
400 dipoles, Eq. (16) gives the equilibrium values 0.591,
0.593, 0.593, 0.594, and 0.594, which are in very good agree-
ment with the numerical asymptotic results of �(t ) obtained
in Sec. III B.

Besides these calculations, we have also computed the full
expressions Eq. (11) and (12) for chains with up to N = 20
dipoles with the same adaptative MCM. The results obtained
are in very good agreement with those shown in Table II. As
both results are rather close, one can conclude that, once �(t )
settles to the (still fluctuating) values observed in Fig. 4, the
system has almost achieved thermal equilibrium. As we men-
tioned already, for larger excitations, the asymptotic values
of �̂(t ) are slightly smaller than those for small excitations,
being the degree of thermalization therefore slightly smaller.
However, it is clear that even in the case of very large
excitations, the system is capable of reaching a degree of
thermalization which is comparable to the one reached with

much smaller excitations, although that requires much longer
times.

From the numerical results of the time evolution of �̂(t )
depicted in Fig. 4, it is clear that the longest thermalization
times are found for the largest excitations. For example from
Fig. 4(c) we obtain that t ≈ 106 is a rough estimate of the ther-
malization time for �K � 0.75�s, while for the largest values
of �K , the corresponding thermalization times increase up
to values t � 107. These estimates of the thermalization time
also indicate that, except for the smallest excitation value
�K = 0.05�s, the thermalization time is always much longer
than the corresponding Lyapunov times τ = 1/λ1 that can be
obtained from Table I. Similar results are found for different
chain lengths. Indeed, our computations show that, except
for small excitations, the system becomes chaotic before an
acceptable thermalization is achieved.

V. CONCLUSIONS

We have explored the connection between chaos, ther-
malization and ergodicity in a linear chain of hundreds of
interacting dipoles. Starting from the GS, the chains have been
excited by supplying different excess energies �K to one of
the dipoles. Our analysis tools are the finite-time Lyapunov
exponent λ(t ) Eq. (1) and the participation ratio �(t ) Eq. (2),
which provide information about the chaoticity of the system
and the localization of the energy. For each value of �K , λ(t ),
and �(t ) are statistically determined by averaging over 20
different initial conditions compatible with initial conditions
Eq. (5).

It turns out that the averaged λ̂(t ) shows always the same
behavior: Once the system is excited, there is a transient
during which λ̂(t ) decreases in time. After the transient, there
is a crossover to a plateau, and the corresponding averaged
maximal Lyapunov exponent λ1 is reached asymptotically.
However, the value of �K dictates the strongly varying times
scales of the behavior of λ̂(t ): A larger excess energy �K
implies a shorter transient and a larger value of λ̂1. This hierar-
chy indicates an increasingly chaotic dynamics for increasing
values of �K . When the system is excited with small and
medium �K values the decay pattern of λ̂(t ) closely follows
the expected power law λ̂(t ) ∼ t−1 of regular orbits. Then,
at a given time, λ̂(t ) deviates from this regular behavior, and
it tends to converge to the corresponding λ1 value. For the
largest excitation energies considered here, there is no trace of
regular behavior in the decay of λ̂(t ) before the corresponding
asymptotic value λ1 is reached.

For small excess energies, the averaged participation ratio
�̂(t ) shows a short transient with a fast spreading of the exci-
tation. After that transient, �̂(t ) fluctuates around a constant
value which depends on N . For larger values of �K , the fast
initial transient observed for small �K values is replaced by a
slow increase. Thence, for long times, �̂(t ) eventually reaches
an asymptotic value. For the largest values of �K , we find that
the extremely long relaxation times of �̂(t ) in comparison
with the values of the Lyapunov times τ = 1/λ1 are due to
the presence of chaotic breathers that keep the system far from
equipartition. Furthermore, we observe that, besides the value
of �K , the energy transfer mechanism is highly dependent on
the initial conditions of the excited dipole. As a consequence,
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a statistical approach as the one carried out in this paper is
necessary to obtain a proper description of the energy transfer
mechanism in the dipole chain.

The numerically calculated asymptotic values of �̂(t )
indicate a degree of thermalization well below the energy
equipartition. Assuming the ergodicity of the system at ther-
mal equilibrium, we have determined the thermal equilibrium
values 〈�〉 of the participation ratio by means of the Boltz-
mann statistics. We find that the thermal equilibrium values
〈�〉 are in good agreement with the asymptotic values attained
by �̂(t ). Since both values are rather close, we can assert that
the asymptotic values of �̂(t ) indicate that the system has
almost achieved thermal equilibrium, which on the other side,
is far from a perfect energy equipartition regime.

Here we have addressed only a dynamical subspace of the
system. A next step would be the study of a more general case
of the same setup. A natural continuation is the extension of
this work to more complex dipole systems, such as dimerized

dipole chains and one-dimensional bilayers of dipoles (e.g.,
diamond and sawtooth arrays [49]). One exciting direction is
the possibility of identifying or even designing flat bands (see,
e.g., Refs. [50–52]) in such one-dimensional arrays of dipoles
and to study their impact on the energy transfer mechanism of
the system.
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