Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Bueno, Fernando 
dc.contributor.authorSerra, Juan G.
dc.contributor.authorVega López, Miguel 
dc.contributor.authorMateos Delgado, Javier 
dc.contributor.authorMolina Soriano, Rafael 
dc.contributor.authorKatsaggelos, Aggelos K.
dc.date.accessioned2022-03-07T09:12:35Z
dc.date.available2022-03-07T09:12:35Z
dc.date.issued2022-04
dc.identifier.citationF. Pérez-Bueno et al. Bayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classification. Computerized Medical Imaging and Graphics 97 (2022) 102048. [https://doi.org/10.1016/j.compmedimag.2022.102048]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/73170
dc.descriptionThis work was supported by project PID2019-105142RB-C22 funded by MCIN / AEI / 10.13039 / 501100011033, Spain, and project P20_00286 funded by FEDER /Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Spain. The work by Fernando Pérez-Bueno was sponsored by Ministerio de Economía, Industria y Competitividad , Spain, under FPI contract BES-2017-081584 . Funding for open access charge: Universidad de Granada / CBUA, Spain.es_ES
dc.description.abstractStain variation between images is a main issue in the analysis of histological images. These color variations, produced by different staining protocols and scanners in each laboratory, hamper the performance of computer-aided diagnosis (CAD) systems that are usually unable to generalize to unseen color distributions. Blind color deconvolution techniques separate multi-stained images into single stained bands that can then be used to reduce the generalization error of CAD systems through stain color normalization and/or stain color augmentation. In this work, we present a Bayesian modeling and inference blind color deconvolution framework based on the K-Singular Value Decomposition algorithm. Two possible inference procedures, variational and empirical Bayes are presented. Both provide the automatic estimation of the stain color matrix, stain concentrations and all model parameters. The proposed framework is tested on stain separation, image normalization, stain color augmentation, and classification problems.es_ES
dc.description.sponsorshipCBUAes_ES
dc.description.sponsorshipJunta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidadeses_ES
dc.description.sponsorshipFamily Process Institute BES-2017-081584es_ES
dc.description.sponsorshipUniversidad de Granadaes_ES
dc.description.sponsorshipEuropean Regional Development Fundes_ES
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad, Gobierno de Españaes_ES
dc.description.sponsorshipAgencia Estatal de Investigación P20_00286es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectBayesian modellinges_ES
dc.subjectHistological imageses_ES
dc.subjectBlind Color Deconvolutiones_ES
dc.subjectStain Normalizationes_ES
dc.titleBayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.compmedimag.2022.102048
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España