Bayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classification
Metadata
Show full item recordAuthor
Pérez Bueno, Fernando; Serra, Juan G.; Vega López, Miguel; Mateos Delgado, Javier; Molina Soriano, Rafael; Katsaggelos, Aggelos K.Editorial
Elsevier
Materia
Bayesian modelling Histological images Blind Color Deconvolution Stain Normalization
Date
2022-04Referencia bibliográfica
F. Pérez-Bueno et al. Bayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classification. Computerized Medical Imaging and Graphics 97 (2022) 102048. [https://doi.org/10.1016/j.compmedimag.2022.102048]
Sponsorship
CBUA; Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades; Family Process Institute BES-2017-081584; Universidad de Granada; European Regional Development Fund; Ministerio de Economía, Industria y Competitividad, Gobierno de España; Agencia Estatal de Investigación P20_00286Abstract
Stain variation between images is a main issue in the analysis of histological images. These color variations, produced by different staining protocols and scanners in each laboratory, hamper the performance of computer-aided diagnosis (CAD) systems that are usually unable to generalize to unseen color distributions. Blind color deconvolution techniques separate multi-stained images into single stained bands that can then be used to reduce the generalization error of CAD systems through stain color normalization and/or stain color augmentation. In this work, we present a Bayesian modeling and inference blind color deconvolution framework based on the K-Singular Value Decomposition algorithm. Two possible inference procedures, variational and empirical Bayes are presented. Both provide the automatic estimation of the stain color matrix, stain concentrations and all model parameters. The proposed framework is tested on stain separation, image normalization, stain color augmentation, and classification problems.