Stepwise selection of functional covariates in forecasting peak levels of olive pollen
Metadatos
Mostrar el registro completo del ítemAutor
Escabias Machuca, Manuel; Valderrama Bonnet, Mariano José; Aguilera Del Pino, Ana María; Santofimia, M. Elena; Aguilera Morillo, María del CarmenEditorial
Springer
Materia
Olea europaea L. airborne pollen Functional-logit-regression Selection of functional predictors
Fecha
2012-10-27Referencia bibliográfica
Escabias, Manuel & Valderrama, Mariano & Aguilera, Ana & Santofimia, M. & Aguilera-Morillo, M.. (2012). Stepwise selection of functional covariates in forecasting peak levels of olive pollen. Stochastic Environmental Research and Risk Assessment. 27. 10.1007/s00477-012-0655-0.
Patrocinador
Projects MTM2010-20502 from Dirección General de Investigación del MEC, Spain and FQM-307 from Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía SpainResumen
High levels of airborne olive pollen represent a
problem for a large proportion of the population because of
the many allergies it causes. Many attempts have been
made to forecast the concentration of airborne olive pollen,
using methods such as time series, linear regression, neural
networks, a combination of fuzzy systems and neural networks, and functional models. This paper presents a
functional logistic regression model used to study the
relationship between olive pollen concentration and different climatic factors, and on this basis to predict the
probability of high (and possibly extreme) levels of airborne pollen, selecting the best subset of functional climatic variables by means of a stepwise method based on
the conditional likelihood ratio test.