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Abstract High levels of airborne olive pollen represent a

problem for a large proportion of the population because of

the many allergies it causes. Many attempts have been

made to forecast the concentration of airborne olive pollen,

using methods such as time series, linear regression, neural

networks, a combination of fuzzy systems and neural net-

works, and functional models. This paper presents a

functional logistic regression model used to study the

relationship between olive pollen concentration and dif-

ferent climatic factors, and on this basis to predict the

probability of high (and possibly extreme) levels of air-

borne pollen, selecting the best subset of functional cli-

matic variables by means of a stepwise method based on

the conditional likelihood ratio test.

Keywords Olea europaea L. airborne pollen �
Functional-logit-regression �
Selection of functional predictors

1 Introduction

High concentrations of olive pollen occur every year in late

spring and early summer in provinces of southern Spain

(Jaén, Granada and Córdoba) where olives are the main

crop; in Granada, 49.5 % of the total area dedicated

to agriculture (127,208 Ha) is occupied by olive trees

(see Alba et al. 2000). High levels of airborne olive pollen

constitute a problem for many inhabitants of these areas

because of the amount of allergies it causes; indeed, many

people are forced to move away during this time of the

year. According to earlier studies (D’Amato and Lobefalo

1989; Macchia et al. 1991), olive trees are the primary

cause of pollen-related allergies in the Mediterranean

region as a whole. In southern Spain, 71 % of the population

is affected (Dı́az de la Guardia et al. 2003).

In consequence, many authors have sought to forecast

airborne olive pollen concentrations, using methods such as

time series (Belmonte and Canela 2002) or have applied

linear regression to determine the factors that influence on it

(Vazquez et al. 2003; Diaz de la Guardia et al. 2003).

Recently, more sophisticated methods have been used in this

field, by Castellano-Mendez et al. (2005), who used neural

networks, and by Aznarte et al. (2007), who combined fuzzy

systems and neural networks to model Betula pendula in the

air. A different approach was taken by Ocaña-Peinado et al.

(2008), who used principal component analysis to model the

inertia process of a transfer function model. Valderrama

et al. (2010) developed a two-step functional model to

forecast cypress pollen concentration. This latter paper

offers a different standpoint for studying the relationship

between olive pollen concentration and various other factors,

from the perspective of functional data analysis.

Under functional data analysis methodology, the conti-

nuity and time-dependency of variables are used as tools
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for modelling and forecasting variables. In the case of olive

pollen, it would be very interesting to know the probability

of high or extreme levels of airborne pollen concentration

in order to minimise its allergenic effect. Functional logit

regression fits this aim perfectly. The functional logistic

regression model was defined to model and predict a binary

response variable from a functional predictor. To this end,

various functional models have been proposed (Cardot and

Sarda 2005; Rossi et al. 2002). Ramsay and Silverman

(1997) proposed diverse functional models based on basis

expansion, and since then other authors have adopted these

methods to predict a binary outcome from functional pre-

dictors (Ratcliffe et al. 2002; Escabias et al. 2004;

Aguilera et al. 2008b).

As stated above, many studies about the factors that may

influence the amount or time evolution of airborne olive

pollen have been developed (Alba et al. 2000; Galán et al.

2005 and Valderrama et al. 2010). Its concentration on any

given day is mainly influenced by the pollen concentration,

temperature, hours of sunshine, humidity and rainfall dur-

ing the immediately preceding days. The influence of the

wind varies from one zone to another, with no well-defined

pattern of association. The temperature may have influence

in different ways; for example, different effects are exerted

by the maximum, minimum and mean temperatures, and by

different ranges of temperature; moreover, there may be a

slighter influence below a certain temperature and a greater

one above it. Furthermore, the influence is not the same

everywhere; different areas are affected in different ways

by different factors. Another fact to be taken into account is

that there are differences between the effects of pollen

concentration throughout the pollination season and its

effects in the pre-peak period, i.e., the period preceding the

maximum level of pollen concentration (Vázquez 2003).

Sánchez-Mesa et al. (2002) defined a classification of

successive years on the basis of the weather factors

affecting grasses and their emission of pollen. Better

knowledge of the climatic conditions that affect olive

pollen emission would enable us to classify these years

from a meteorological point of view and thus obtain a

general model of olive pollen concentration.

In the present paper, the phenomenon analysed—air-

borne pollen concentration—is a seasonal one. The main

pollen season (MPS) is defined as the period in which the

greatest airborne olive pollen concentration occurs. The

pollen season as a whole, extends from April to mid/late

June, with the greatest air concentrations occurring in

May, when rainfall decreases and mean temperatures rise.

Nevertheless, MPS has been defined in various ways.

For example, Sanchez-Mesa et al. (2002) defined MPS

as beginning when a mean value of at least 1 pollen grain/

m3/day was detected, and at least 1 grain/m3 on the

following days, with no more than one consecutive day of 0

grains/m3; and the season ended when pollen concentration

in the air decreased to 1 or 2 grains/m3/day. Other authors

define the beginning of the MPS with respect to the chilling

period (Galán et al. 2005). It is important to stipulate the

MPS very precisely so that the study is not affected by long

tails at the beginning and end of the season, which would

provoke serious errors in the statistical analysis.

In order to fit and predict peaks of airborne pollen

concentration in the city of Granada (Spain), we analysed

the different meteorological factors that affect this ques-

tion, using a stepwise method based on a functional logistic

regression model.

In summary, the main goals of this paper are to:

– Model the occurrence of airborne olive pollen peaks,

using climatic functional variables.

– Predict as accurately as possible the probability of

occurrence of airborne olive pollen peaks, by observing

the time evolution of these climatic variables.

– Identify the climatic variables that best enable us to

model the occurrence of olive pollen peaks.

– Analyze the forecasting performance of the model.

2 Theory of the functional logit regression model

A functional variable is one whose values depend on a

continuous magnitude such as time. The statistical tool based

on the analysis of functional data is the stochastic process.

However in the approach based on basis expansion, as

adopted in this paper, the functional (predictor) variables

included in the model are not considered to be random. They

are functional in the sense that they are evaluated at any time

in the domain, instead of the discrete way, in which they were

originally measured or observed (Ramsay and Silverman

2005). Thus, a functional data set is a set of curves

x1ðtÞ; . . .; xnðtÞf g;with t 2 T: Each curve can be observed at

different time points of his argument t as xi ¼ xi t0ð Þ; . . .;ð
xi tmi
ð ÞÞ0 for the set of times t0; . . .; tmi

; i ¼ 1; . . .; n and these

are not necessarily the same for each curve.

Regardless of the stochastic nature of functional data

and the form they are observed (continuously or discretely)

the usual assumption in functional data analysis and con-

sidered in this work is that the curves belong to the squared

integrable functions space L2 Tð Þ defined as

L2 Tð Þ ¼ f : T �! R :

Z

T

f 2 tð Þdt\1

8<
:

9=
;:

With the usual scalar product
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f ; gh iu¼
Z

T

f tð Þg tð Þdt; 8f ; g 2 L2 Tð Þ; ð1Þ

this is a separable Hilbert space.

Different approaches have been taken to the study of

functional data, including the nonparametric methods

proposed by Müller (2008) and Ferraty and Vieu (2006)

and the basis expansion methods used by Ramsay and

Silverman (2005). The latter method is adopted in the

present study, in which we seek to reconstruct the func-

tional form of curves in order to evaluate them at any time

point t. This method assumes that the curves belong to a

finite dimensional space generated a basis of functions

/1 tð Þ; . . .;/p tð Þ
� �

and so they can be expressed as

xi tð Þ ¼
Xp

j¼1

aij/j tð Þ; i ¼ 1; . . .; n: ð2Þ

The functional form of the curves is determined when the

basis coefficients ai ¼ ai1; . . .; aip

� �0
are known. These can

be obtained from the discrete observations either by least

squares or by interpolation (see, for example, Escabias

et al. 2005, 2007).

Depending on the characteristics of the curves and the

observations, various classes of basis can be used (see, for

example, Ramsay and Silverman 2005). In practice, those

most commonly used are, on the one hand, the basis of

trigonometric functions for regular, periodic, continuous

and differentiable curves, and on the other, the basis of

B-spline functions, which provides a better local behavior

(see De Boor 2001).

In order to formulate the functional logit model let Y be a

binary response random variable and let X tð Þ : t 2 Tf g be a

functional covariate related to Y. Given a curve x tð Þ we can

consider that the conditional distribution of the response to the

given curve follows a Bernoulli distribution whose parameter

depends on the curve. That parameter is the probability of

success and the conditional expectation is expressed

p x tð Þð Þ ¼ P Y ¼ 1jX tð Þ ¼ x tð Þf g
¼ E Yj X tð Þ ¼ x tð Þ : t 2 Tf g½ �:

Given x1 tð Þ; . . .; xn tð Þ a sample of curves of the functional

predictor and y1; . . .; yn a sample of the response associated

with the n curves, the model is expressed as

yi ¼ pi þ ei ¼ p xi tð Þð Þ þ ei; i ¼ 1; . . .; n;

and in matrix form as

Y ¼ pþ e ð3Þ

where Y ¼ y1; . . .; ynð Þ0; p ¼ p1; . . .; pnð Þ0; with

pi ¼
exp aþ

R
T xi tð Þb tð Þdt

� �
1þ exp aþ

R
T xi tð Þb tð Þdt

� � ; i ¼ 1; . . .; n; ð4Þ

e ¼ e1; . . .; enð Þ0 the vector of centered random errors, with

unequal variances and a Bernoulli distribution, and bð�Þ the

functional parameter to be estimated.

This model can also be expressed in terms of the logit

transformations as

li ¼ ln
pi

1� pi

� �
¼ aþ

Z

T

xi tð Þb tð Þdt; i ¼ 1; . . .; n; ð5Þ

which presents the logistic model as a generalised func-

tional linear model, as proposed by James (2002), with the

logit transformation as the link function.

One advantage of regression models compared to other

prediction models is that we can interpret the relationship

between the explanatory variables and the response quan-

titatively. In the logit case this quantitative relationship is

expressed in terms of odds ratios. Thus, the exponential of

the integral over the interval t0; t0 þ hð Þ of the functional

parameter multiplied by a constant K is the odds ratio of

response Y = 1 versus Y = 0 when the sample path is

constantly increased by K units in that interval (Escabias

et al. 2005). For a more general increase DX tð Þ ¼ g tð Þ the

odds ratio would be

h DX tð Þ ¼ gðtÞ=Dt ¼ h½ � ¼ exp

Zt0þh

t0

g tð Þb tð Þdt

8<
:

9=
;

Following Ramsay and Silverman (2005) in their

explanation for the linear case, the estimation of the

functional parameter b tð Þ is impossible with the usual least

squares methods (weighted in this case), since b tð Þ contains

an uncountable set of values and we would have at most a

finite number of conditions. In other words, there could be

infinite solutions with a perfect fit of the observations to the

response. If we consider the sample paths x1 tð Þ; . . .; xn tð Þ
expressed in terms of the basis f/1 tð Þ; . . .;/p tð Þg; in the

form of Eq. 2 and the functional parameter in terms of a

different basis fu1 tð Þ; . . .;uq tð Þg as

b tð Þ ¼
Xq

k¼1

bkuk tð Þ: ð6Þ

The functional logit model in terms of the logit trans-

formations is then expressed as

li ¼ aþ
Xp

j¼1

Xq

k¼1

aijwjkbk; i ¼ 1; . . .; n ð7Þ

with wjk being the scalar products between the basis

functions
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wjk ¼
Z

T

/j tð Þuk tð Þdt; j ¼ 1; . . .; p; k ¼ 1; . . .; q:

The functional logit model is now a classical logit model

which in matrix form and in terms of logit transformations

is expressed as

L ¼ Xb

where L ¼ l1; . . .; lnð Þ0 is the vector of logit transformations.

X ¼ 1 j AWð Þ is the design matrix, and | indicating the sep-

aration between the two boxes of the matrix. 1 ¼ 1; . . .; 1ð Þ0
is a n - length vector of ones. W is the matrix whose entries

(wjk) are the scalar products (defined in (1)) between basic

functions setted abobe. A is the matrix of sample curve basis

coefficients as rows. b ¼ b0; b1; . . .; bq

� �0
with b0 = a are

the basis coefficients of the functional parameter. These

coefficients would be the parameters of the multiple model to

be estimated.

A special case occurs when the same basis is used for

both the functional parameter and the explanatory curves.

Then W is a square matrix that can be diagonal with a

Fourier basis and tridiagonal with a B-splines basis. In this

paper we propose the use of a stepwise method to choose

the best functional predictors in order to model and predict

airborne olive pollen peaks; to do so we show the gener-

alisation of the functional logit model to the case of more

than one functional predictor.

Let Y be a binary response and X1 tð Þ;X2 tð Þ; . . .;Xr tð Þ a

set of functional predictors related to Y. Let us consider a

sample of curves of the predictors xi1 tð Þ; . . .; xir tð Þð Þ0; i ¼
1; . . .; n and y1; . . .; yn; the associated sample of the

responses. Then, in terms of the logit transformations, the

model is formulated as

li ¼ aþ
Z

T

xi1 tð Þb1 tð Þ þ � � � þ xir tð Þbr tð Þð Þdt;

i ¼ 1; . . .; n;

ð8Þ

being b1 tð Þ; . . .; br tð Þ the r functional parameters associated

to the functional covariates.

By considering the basis expansion of the sample curves

in terms of the basis /11ðtÞ; . . .;/1p1
ðtÞ

� �
; . . .; /r1ðtÞ;f

. . .;/rpr
ðtÞg respectively in the form

xih tð Þ ¼
Xph

j¼1

aijh/hj tð Þ; i ¼ 1; . . .; n; h ¼ 1; . . .; r: ð9Þ

and also for the functional parameters in the form

bh tð Þ ¼
Xqh

k¼1

bhkuhk tð Þ; h ¼ 1; . . .; r: ð10Þ

in terms of the basis u11ðtÞ; . . .;u1q1
ðtÞ

� �
; . . .; ur1ðtÞ; . . .;f

urqr
ðtÞg; the logit model would be in matrix form and in

terms of logit transformations

L ¼ Xb

where L ¼ l1; . . .; lnð Þ0 is a vector of logit transformations.

X ¼ 1jA1W1j � � � jArWrð Þ is the design matrix of the model.

1 ¼ 1; . . .; 1ð Þ0 is a n-length vector of ones. Wh is the

ph 9 qh matrix of scalar products between basis

/h1ðtÞ; . . .;/hph
ðtÞ

� �
and basis uh1ðtÞ; . . .;uhqh

ðtÞ
� �

; h ¼
1; . . .; r defined by Eq. (1). A1; . . .;Ar are the matrices that

have as rows the basis coefficients of the curves.

b ¼ b0jb1j � � � jbrð Þ0 with bh ¼ bh1; . . .; bhqh

� �0
; b0 ¼ a

and h ¼ 1; . . .; r are the vectors of the basis coefficients of

the functional parameters.

As in the case of a single functional predictor, the same

basis can be used in all cases (predictors and parameters).

This is done in the application of the airborne olive pollen

model.

3 Selection of functional variables

The main contribution of this paper is in the selection of

climatic functional variables predicting the occurrence of

pollen peaks. This selection is based on a forward stepwise

method, using conditional likelihood ratio tests. This sec-

tion describes the particular tests involved in this selection

method.

3.1 Goodness of fit test

The goodness of fit test is used to determine whether the

proposed logit regression model fits the data. In the liter-

ature many such tests have been described, and some are

compared in Hosmer et al. (1997) for the multiple case. In

the present paper, we use the likelihood ratio test based on

the Wilks statistic. This test is expressed as

H0: pi ¼
exp aþ

R
T xi tð Þb tð Þdt

� �
1þ exp aþ

R
T xi tð Þb tð Þdt

� � ; i ¼ 1; . . .; n

H1: pi 6¼
exp aþ

R
T xi tð Þb tð Þdt

� �
1þ exp aþ

R
T xi tð Þb tð Þdt

� �

that is, we seek to determine whether the conditional

expectation E Y jX ¼ xi tð Þ½ � ¼ E½Yi� ¼ pi can be expressed

as a logit regression model.

In general the Wilks statistic follows a chi-square dis-

tribution and is defined as

�2 ln K ¼ �2 ln
supH0

L X1; . . .;Xn; hð Þ
sup L X1; . . .;Xn; hð Þ  

H0

n!1
v2

d
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with d being the difference between the dimensions of the

two parametric spaces. The Wilks statistic in logistic

regression can be expressed as

G2ðMÞ ¼ �2 ln K

¼ 2
Xn

i¼1

yi ln
yi

bpi

� 	
þ 1� yið Þ ln 1� yi

1� bpi

� 	� �
 
H0

n!1
v2

n�q�1:

with d = n - q - 1 and q the number of non-functional

covariates of the model, that is, the number of bases con-

sidered for b(t). The G2 Mð Þ statistic is termed deviance and

plays the same role as the sum of squares of residuals in the

linear regression model.

3.2 Conditional likelihood ratio test

This test is used to choose between two nested models and

can be formulated as

H0: Model Mh is verified

H1: ModelMh is not verified assuming model M;

where M is the logit model with possibly all the functional

variables X1ðtÞ; . . .;XrðtÞ and which is assumed to be the

true model, and where Mh is the model nested in M which

is obtained after setting one functional parameter to zero

bh(t) = 0. This test could be formulated as

H0: li ¼ aþ
Z

T

xi1ðtÞb1ðtÞ þ � � � þ xiðh�1ÞðtÞbh�1ðtÞ
�

þxiðhþ1ÞðtÞbhþ1ðtÞ þ � � � þ xirðtÞbrðtÞ
�
dt

H1: li ¼ aþ
Z

T

xi1ðtÞb1ðtÞ þ � � � þ xirðtÞbrðtÞð Þdt

or equivalently

H0: bhðtÞ ¼ 0

H1: bhðtÞ 6¼ 0

The test statistic can be calculated as the difference

between the deviance (goodness of fit statistic) of each

model G2 Mh=Mð Þ ¼ G2 Mhð Þ � G2 Mð Þ because

G2 Mh=Mð Þ ¼ � 2 ln
LMh

LM

¼ 2 LM � LMh
ð Þ � 2LS þ 2LS

¼ �2 LMh
� LSð Þ½ � � �2 LM � LSð Þ½ �

¼ G2 Mhð Þ � G2 Mð Þ;

where LM and LMh
are the maxima of the log-likelihood

functions of general model M and the particular one Mh

respectively, and LS is the maximum of the log-likelihood

of the saturated model (Agresti 2002). This statistic can

also be expressed as

G2 Mh=Mð Þ ¼ � 2 ln K ¼ �2
Xn

i¼1

yi ln
bpi Mhð Þ
bpi

� 	�

þ 1� yið Þ ln
1� bpi Mhð Þ

1� bpi

� 	�
 
H0

n!1
v2

d:

where bpi Mhð Þ and bpi are the predicted probabilities under

the Mh and M models respectively. The degrees of freedom

d of the chi-square distribution of the Wilks statistic are the

difference between the number of parameters of each

model. In the case of the functional logit model this dif-

ference is d = qh.

The conditional likelihood ratio test allows the stepwise

selection of functional variables. The forward method consists

of examining each step of the variable that is not in the model

and whose introduction would further reduce the deviance.

Functional variables would be introduced into the model until

there is no further significant reduction of the deviance.

Step 0. Fit the logit model with no variables, only the

intercept term, and calculate its deviance. Set this model as

the current model.

Step 1. Fit the models obtained by adding to the logit

model each of the variables that are not in the current

model, and select the variable that most reduces the devi-

ance of the current model.

Step 2. If the difference between deviances is lower than

a fixed chi-square quantile, stop. Otherwise, update the

current model as the one with the selected variable and

return to Step 1.

4 Forecasting peaks of airborne olive pollen

from functional climatic variables

Our database contains daily observations of the concentra-

tion of airborne olive pollen, measured in grains per cubic

meter of air, in the city of Granada from 1 January 1992 to

30 June 2003. The measurement of this concentration was

performed following the standard methodology of the

Spanish Aerobiology Society with a Hirst-type collector

located at the Faculty of Sciences, University of Granada.

Besides the concentration of olive pollen, we recorded

the daily values of the following meteorological variables:

maximum, minimum and mean temperature, hours of sun-

light, relative humidity, rainfall and wind speed. These data

were obtained from the Spanish Institute of Meteorology.

The MPS coincides with the flowering of the tree, which

in the case of the olive takes place in April, May, June and

part of July. Various definitions have been given for the

beginning and end of the MPS. For example, Sánchez-

Mesa et al. (2002) define its start as the day on which an

average value of at least one grain of pollen per cubic

meter of air is recorded, and when this value is maintained

for several consecutive days. The end of the MPS is defined
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as the day on which there is a decrease to 1 or 2 grains per

m3. Other authors define the MPS on the basis of the days

that exceed a certain average temperature. For our pur-

poses, the MPS is defined as the period from 15 April to 14

July of each year. Figure 1 describes the different climatic

variables observed in the MPS.

The purpose of this study is to model and forecast high

levels of olive pollen for the period spanning 1 week, from

the evolution of climatic variables during the preceding

week. The MPS considered covers 91 days (13 weeks) per

year, except in the last year considered (2003), when values

were obtained from 15 April to 30 June, and so in this case

data were available for 11 weeks. Thus, for each functional

variable we had a total of 154 weeks’ data.

For our purposes, the binary response variable was

defined as taking the value of one in a week if there was at

least 1 day when the pollen level exceeded 200 grains per

m3 of air. This is the level of pollen considered by the

Spanish Society of Allergology and Clinical Immunology

to be dangerous for patients with allergy problems. Of the

154 weeks observed, 43.51 % exceeded this threshold.

As stated above, the functional variables used to predict

the peak of airborne olive pollen were the weekly curves

for maximum, minimum and average temperature, hours of

sunshine, relative humidity, rainfall, wind speed and the

current concentration of airborne olive pollen. Although we

had daily records for these variables, the curves were

reconstructed by quasi-natural cubic spline interpolation

(Escabias et al. 2005). Figure 2 shows interpolation curves

for some of the weeks and some of the variables. The

reconstruction of these curves can be expressed in terms of

the basis of the cubic B-spline functions defined by the

nodes 1; 2; 3; 4; 5; 6; 7f g which was the basis used for all

the functional variables considered.

To meet our objectives, the multi-functional logistic

regression model was used.

The first and most important step was to determine the

variables, among those available, that best model the

response through a multi-functional logistic model. To

choose the functional variables that best predict a peak of

pollen, the procedure used was a forward-stepwise selec-

tion method based on conditional likelihood ratio tests.

In order to assess the accuracy of the predictions made

by different models, we selected a training sample of size

100 and a test sample of size 54, fitted the model with the

training sample and predicted the test sample. Finally, both

predictions, on the training sample and on the test sample,

were evaluated by the area under the ROC curve and by the

rate of correct classifications explained later.

After several tests it was found that depending on the

training sample chosen, the functional variables that best

predicted the occurrence of pollen peaks could vary. To

decide which variables were the best predictors of our

response, we repeated the sample selection (training and

test) 500 times and observed the frequency of appearance of

each variable in the model and the order in which it did so.

The results of these repetitions are summarised as follows.

In the 500 replications of the experiment, the first var-

iable to enter the model and therefore the most important

predictor of pollen peaks was the current level of pollen.

This corroborates the findings of various authors regarding

the self-explanatory capacity of the pollen level (see, for

example, Valderrama et al. 2010). In 74 of the 500 repli-

cations of the experiment, just two variables entered the

model, firstly the level of pollen, and secondly one with the

following frequencies:

Variable Frequency

Maximum temperature 13

Minimum temperature 11

Mean temperature 15

Isolation 10

Humidity 11

Rainfall 11

Wind speed 14

In 22 of the 500 replications of the experiment, four

variables entered the model. Because of this small per-

centage, we chose to reject these replications.

In the remaining 404 replications (80.8 %) three optimal

functional variables were required to predict pollen peaks.

The most important functional variables in this case were

as follows:

100 % of the time, the first variable was the level of

pollen. Of the remaining variables, the frequencies of

appearance in second position in the model are summarised

in the following table.

Variable Frequency

Maximum temperature 16

Minimum temperature 82

Mean temperature 80

Isolation 47

Humidity 96

Rainfall 20

Wind speed 63

Thus, of these variables, humidity entered the model

significantly more often than the others. The minimum and

mean temperature were the other two most important
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variables in frequency, with the minimum temperature

being slightly the more significant. It should be noted that

the average temperature used in this database is the average

of the maximum and minimum temperatures. Of these two

values, peak pollen levels are more strongly affected by the

minimum temperature. In summary, after current pollen

levels, the two most important variables for predicting peak

pollen appear to be the minimum temperature and humidity.

The importance of these two variables is confirmed by

the fact that the 96 occasions on which the second most

important variable was humidity, the remaining variables

entered in third place with the following frequencies:

Variable Frequency

Maximum temperature 7

Minimum temperature 32

Mean temperature 8

Isolation 29

Rainfall 14

Wind speed 6

On the 82 occasions on which the minimum temperature

entered in second place, the distribution of variables that

entered in third place was:

Variable Frequency

Maximum temperature 13

Mean temperature 9

Isolation 10

Humidity 32

Rainfall 10

Wind speed 8

To evaluate the predictive ability of the model, we used

the rate of correct classifications and the area under the

ROC curve.
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Fig. 2 Interpolated curves for some predictor variables

Table 1 Summary of correct classification rates and ROC areas

Training samples Test samples

ROC CCR ROC CCR

Mean 0.99 98.6 0.78 75.98

ST. Dev 0.029 3.344 0.069 6.085

Mı́n 0.84 83.0 0.59 57.41

Q1 1.00 100 0.74 72.22

Q2 1.00 100 0.78 75.93

Q3 1.00 100 0.82 79.63

Máx 1.00 100 0.97 90.74
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The correct classification rate (CCR) is one of the most

commonly used measures in logistic regression to assess the

goodness of predictions. To calculate the CCR a cutoff point

pc (usually pc = 0.5) is chosen and a prediction is considered

to be correctly classified when the estimated probability

bpi� pc and yi = 1 or bpi\pc and yi = 0, otherwise it is

considered classified incorrectly. Thus, the CCR is defined as

the ratio between the number of observations correctly

classified and the total number of sample observations.

Although a cutoff value of 0.5 is usually used, it would

be more appropriate to use the cutoff point that maximises

the CCR (Hosmer and Lemeshow 1989), which is usually

very close to the proportion of ones in the sample.

The ROC curve is a graph that evaluates the model’s

ability to discriminate. The fitted logistic regression model

predicts the value of the response depending on whether the

predicted probability is greater than or equal to the cut-point

chosen to discriminate. The logistic regression model is

considered a good predictor if it predicts as a success those

individuals actually observed to be successes and predicts as

a failure those individuals observed to be failures. The ROC

curve plots the true positive rate (y ¼ 1; by ¼ 1) against the

false positive rate (y ¼ 0; by ¼ 1) for different cutoff points.

The nearest point to the unit is the best discrimination point

and the area under the curve is a measure of the capacity to

discriminate. The closer this measure is to one, the better it is,

and an acceptable value would be 0.7 or higher.

As indicated above, the prediction models with these

three functional variables were evaluated using the area

under the ROC curve and the CCR for both the fitted values

(training sample) and the predictions of the test sample. As

summary measures of the replications, we calculated the

mean and the quartiles of the distributions of the areas

under the ROC curve and the CCR for the training sample

and the sample test (Table 1, Fig. 3). Thus, we conclude

that the functional logit model performs very well with

respect to predicting the peak values of airborne olive

pollen concentration, with a mean CCR of nearly 99 % in

the training samples and 76 % in the test samples. The

ROC area showed a good prediction ability for the model,

with a mean area of 0.99 in the training samples and 0.78 in

the test samples.

In order to evaluate the goodness of fit of the logit

model, we obtained the deviance statistics G2(M) and the p-

values of the chi-square, with 100 - 27 - 1 degrees of

freedom for each of the 404 models in which the three

selected variables entered the stepwise selection method. In

only 6 % of the replications did the goodness of fit test

show that the logit model was not a good model. For the

model with the 154 curves, the deviance statistic was

G2(M) = 53.585, which produced a p-value for the chi-

square statistic distribution with 154 - 27 - 1 = 126

degrees of freedom of 1, and so we accept that the model

that uses these variables to predict peaks of airborne olive

pollen performs adequately. Finally, the prediction mea-

sures for this model showed it to perform well, with an area

under the ROC curve of 0.9792 (see Fig. 4) and a CCR of

94.8052 %.

5 Conclusions

The aims of this paper were to model and forecast the

occurrence of airborne olive pollen peaks, on the basis of

climatic functional variables, and to analyze the accuracy
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of these predictions. The methodology developed consists

of deriving a functional logit regression model whose

covariates are selected by a stepwise procedure.

After evaluating the repetitions of the the stepwise

method, we conclude that the optimum set of variables to

explain the occurrence of peaks of airborne olive pollen in

a given week are the current level of pollen concentration,

together with the minimum temperature and the humidity

in the previous week. Both the CCR and the area under the

ROC curve reflect the good performance of the functional

logit model to predict these peak values.

The functional logit model is a particular case of the

functional generalized linear model proposed by James

(2002) with the logit link that works well in the prediction

of occurrence of olive pollen peaks in a week from the

evolution of meteorological variables in the previous week.

In a similar way authors plan to extend their study to model

the number of olive pollen peaks in a week from the same

functional covariates, by considering a Poisson link in the

same general class of functional generalized linear models.
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