Mostrar el registro sencillo del ítem

dc.contributor.authorJavaloyes, Miguel Ángel
dc.contributor.authorSánchez Caja, Miguel 
dc.contributor.authorFernández Villaseñor, Fidel
dc.date.accessioned2022-02-16T12:55:13Z
dc.date.available2022-02-16T12:55:13Z
dc.date.issued2022-01-31
dc.identifier.citationJavaloyes, M.A.; Sánchez, M.; Villaseñor, F.F. On the Significance of the Stress–Energy Tensor in Finsler Spacetimes. Universe 2022, 8, 93. [https://doi.org/10.3390/universe8020093]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/72874
dc.descriptionMAJ was partially supported by the project PGC2018-097046-B-I00 funded by MCIN/ AEI /10.13039/501100011033/ FEDER “Una manera de hacer Europa” and Fundación Séneca project with reference 19901/GERM/15. This work is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Science and Technology Agency of the Región de Murcia. MS and FFV were partially supported by the project PID2020-116126GB-I00 funded by MCIN/AEI/10.13039/501100011033, by the project PY20-01391 (PAIDI 2020) funded by Junta de Andalucía—FEDER and by the framework of IMAG-María de Maeztu grant CEX2020-001105-M funded by MCIN/AEI/10.13039/50110001103.es_ES
dc.description.abstractWe revisit the physical arguments that led to the definition of the stress–energy tensor T in the Lorentz–Finsler setting (M, L) starting with classical relativity. Both the standard heuristic approach using fluids and the Lagrangian one are taken into account. In particular, we argue that the Finslerian breaking of Lorentz symmetry makes T an anisotropic 2-tensor (i.e., a tensor for each L-timelike direction), in contrast with the energy-momentum vectors defined on M. Such a tensor is compared with different ones obtained by using a Lagrangian approach. The notion of divergence is revised from a geometric viewpoint, and, then, the conservation laws of T for each observer field are revisited. We introduce a natural anisotropic Lie bracket derivation, which leads to a divergence obtained from the volume element and the non-linear connection associated with L alone. The computation of this divergence selects the Chern anisotropic connection, thus giving a geometric interpretation to previous choices in the literature.es_ES
dc.description.sponsorshipFundación Séneca, Science and Technology Agencyes_ES
dc.description.sponsorshipIMAG-María de Maeztu CEX2020-001105-M, MCIN/AEI/10.13039/50110001103es_ES
dc.description.sponsorshipJunta de Andalucía FEDERes_ES
dc.description.sponsorshipRegión de Murcia, Spaines_ES
dc.description.sponsorshipFundación Séneca MCIN/AEI/10.13039/501100011033, PID2020-116126GB-I00, PY20-01391es_ES
dc.description.sponsorshipEuropean Regional Development Fund 19901/GERM/15es_ES
dc.description.sponsorshipJunta de Andalucíaes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectDivergence in Finsler manifoldses_ES
dc.subjectStress–energy tensores_ES
dc.subjectFinsler spacetimees_ES
dc.subjectLorentz symmetry breakinges_ES
dc.subjectVery special relativityes_ES
dc.titleOn the Significance of the Stress–Energy Tensor in Finsler Spacetimeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/universe8020093
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España