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Abstract: We revisit the physical arguments that led to the definition of the stress–energy tensor T
in the Lorentz–Finsler setting (M, L) starting with classical relativity. Both the standard heuristic
approach using fluids and the Lagrangian one are taken into account. In particular, we argue that
the Finslerian breaking of Lorentz symmetry makes T an anisotropic 2-tensor (i.e., a tensor for each
L-timelike direction), in contrast with the energy-momentum vectors defined on M. Such a tensor is
compared with different ones obtained by using a Lagrangian approach. The notion of divergence is
revised from a geometric viewpoint, and, then, the conservation laws of T for each observer field are
revisited. We introduce a natural anisotropic Lie bracket derivation, which leads to a divergence obtained
from the volume element and the non-linear connection associated with L alone. The computation of
this divergence selects the Chern anisotropic connection, thus giving a geometric interpretation to
previous choices in the literature.

Keywords: divergence in Finsler manifolds; stress–energy tensor; Finsler spacetime; Lorentz
symmetry breaking; very special relativity

1. Introduction

This article has a double aim in Lorentz–Finsler geometry. The first one is to revisit the
physical grounds of the stress–energy tensor T, Section 3. The possible extensions of the
relativistic T are discussed from the viewpoint of both fluids mechanics and Lagrangian
systems. The second one is to revise geometrically the notion of divergence, Section 4,
yielding consequences about the conservation of T, Section 5. With this aim, we introduce
new notions of the Lie bracket and the derivative associated with a nonlinear connection
and applicable to anisotropic tensors fields, which appear naturally in Finsler geometry.

Finslerian modifications of General Relativity aim to find a tensor T collecting the
possible anisotropies in the distribution of energy, momentum, and stress, which will
serve as a source for the (now Lorentz–Finsler) geometry of the spacetime [1–5]. Some
of these proposals may be waiting for experimental evidence, postponing then how the
basic relativistic notions would be affected. However, such a discussion is relevant to
understand the scope and implications of the introduced Finslerian elements. In a previous
reference [6], the fundamentals of observers in the Finslerian setting were extensively
studied, including its compatibility with the Ehlers–Pirani–Schild approach. Now we focus
on the stress–energy tensor T.

The difficulty to study such a T is apparent. Recall that, using the principle of equiva-
lence, General Relativity is reduced infinitesimally into the Special one, which provides
a background for interpretations. However, in the Lorentz–Finsler case, the infinitesimal
model is changed into a Lorentz norm (instead of scalar product), implying a breaking
of Lorentz invariance. This is a substantial issue in its own right which has been studied
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in the context of Very Special Relativity and others [7–11]. As an additional difficulty, the
infinitesimal model changes with the point1 .

Two noticeable pre-requisites are the following: (a) only the value of the Lorentz–
Finsler metric on causal directions is relevant [6,14] (this is briefly commented in the setup
Section 2.3), and (b) there is a significant variety of possible extensions of the relativistic kine-
matic objects to the Finsler case, at least from the geometric viewpoint (see Appendix A).
Taking into account these issues, the extension of the notion of the stress–energy tensor to
the Finslerian setting is discussed in Section 3.

We start at the fluids approach. As a preliminary question, energy-momentum is
discussed, in Section 3.1. We emphasize that, even though this is well-defined as a tangent
vector in each tangent space Tp M, p ∈ M, different observers u, u′ at p will use coordinates
related by non-trivial linear transformations. Indeed, the latter will depend on both L and
the chosen method to measure relative velocities. Moreover, when the stress–energy T
is considered in Section 3.2, the arguments in Classical Mechanics and Relativity, which
support its status as a tensor, hold only partially in the Lorentz–Finsler setting. Indeed, T
acquires a nonlinear nature that is codified in an (observer-dependent) anisotropic tensor,
rather than in a tensor on M.

The Lagrangian approach is discussed in Section 3.3. This approach has been devel-
oped recently by Hohmann, Pfeifer, and Voicu [15,16], who introduced an energy-momentum
scalar function. Here, we discuss the analogies and differences of this function with the
canonical relativistic stress–energy tensor δSmatter/δgµν and the 2-tensor T obtained from
the fluids approach above. Relevant issues are the existence of different methods to obtain a
2-tensor starting at a scalar function, the recovery of this function from a matter Lagrangian,
and the possibility to consider the Palatini Lagrangian as the background one (rather than
Einstein–Hilbert-type Lagrangians used by the cited authors; recall that Palatini’s becomes
especially meaningful in the Finslerian case [17]). The important case of kinetic gases is
considered explicitly (Example 2).

Once the definition of T has been discussed, we focus on its conservation, Section 5,
revisiting first the divergence theorem, Section 4. This is crucial in the Finslerian set-
ting because, as discussed before, the Lagrangian approach above does not guarantee a
conservation law as the relativistic div(G) = 0.

Section 4 analyzes the divergence from a purely mathematical viewpoint. Now, L is
regarded as pseudo-Finsler (the results will be useful not only in any indefinite signature
but also in the classical positive definite case), and T will not be assumed to be symmetric
a priori. Classically, the divergence of a vector field Z is defined with the derivation
associated with the Lie bracket [Z, X] = LZX, applied to the volume element. In the
Finslerian case, however, the Lie derivative and bracket do not make sense for arbitrary
anisotropic vector fields. This difficulty was circumvented by Rund [18], who redefined
div(Z) in such a way that a type of divergence theorem held. However, the Lie viewpoint
is restored here.

Section 4.1 Once a nonlinear connection HA (seen as a horizontal distribution on A) is pre-
scribed, we can define a Lie bracket lHZ X and, then, a Lie derivative LH

Z X ( Definitions 1 and 2;
Theorem 1 (C)). Noticeably, the former lHZ is expressible in terms of the infinitesimal flow of
Z (Proposition 1).

Section 4.2 The divergence of Z is naturally defined by using this Lie bracket (Definition 3).
For the computation of div(Z), however, one can use an anisotropic connection ∇ (this can
be seen as a Finsler connection dropping its vertical part, see Section 2) and a priori Chern’s
one is not especially privileged (Proposition 2).

Section 4.3. We give a general Finslerian version of the divergence theorem for any
anisotropic vector field Z, emphasizing the role of the choice of an (admissible) vector field
V : M → A, which in the Lorentzian case can be interpreted as an observer field; this is
expressed in terms of integration of forms in the spirit of Cartan’s formula (Theorem 2,
Remark 5). We also explain how the boundary term can be expressed in different ways



Universe 2022, 8, 93 3 of 33

by using a normal either with respect to the pseudo-Riemannian metric gV or to the
fundamental tensor, which were the choices of Rund [18] and Minguzzi [19] resp.

Section 5 gives some applications to conservation laws.
Section 5.1. First, we discuss the definition of divergence for the case of T. Our

definition for vector fields was not biased to the Chern anisotropic connection, but this
will be used for div(T) (Definition 4). The reason is that div(T) should behave under
contraction in a similar way as in the isotropic case (namely, as in Formula (11)), which
privileges Chern’s connection (Proposition 3).

Section 5.2. As an interlude about the appearance of Chern’s ∇, a comparison with
the possible use of Berwald’s and previous approaches in the literature is done.

Section 5.3. A conservation law for the flow of TV(XV) is obtained (Corollary 2),
stressing three hypotheses on the vanishing for V of elements related to the stress–energy
T (div(T) = 0), the anisotropic vector X (lHX g = 0, generalizing the isotropic case) and
a derivative of V. The latter hypothesis is genuinely Finslerian, and it means that some
terms related to the nonlinear covariant derivative DV must vanish globally (V can always
be chosen such that they vanish at some point). It is worth pointing out that our general
formula for the integral of the divergence (36) recovers the classical interpretation of the
divergence as an infinitesimal growth of the flow (now observer-dependent). So, div(T) = 0
is equivalent to the conservation of energy-momentum in the instantaneous rest-space of
each observer—see Remark 10.

We finish by applying this general result to two examples. First, we apply it to Lorentz
norms, showing that the conservation laws of Special Relativity still hold even though, now,
the conserved quantity may be different for different observers. As a second example, we
give natural conditions so that the flow of TV(XV) (whenever it exists as a Lebesgue integral,
eventually equal to ±∞) is equal in two Cauchy hypersurfaces of a globally hyperbolic
Finsler spacetime. Indeed, we refine a previous result by Minguzzi [19], who assumed that
L was defined on the whole TM and TV(XV) was compactly supported. We show that a
combination of Rund’s and Minguzzi’s methods to compute the boundary terms allows
one to obtain appropriate decay rates (namely, the properly Finslerian hypothesis (49)),
which ensure the conservation.

2. Preliminaries and Setup

First, let us set up some notation. In all the present text, M is a connected smooth
(C∞) manifold of dimension n ≥ 2. As in previous references [17,20], any coordinate chart
(U, (x1, . . . , xn)) of M naturally induces a chart (TU, (x1, . . . , xn, y1, . . . , yn)) of TM defined
by the fact that

v = yi(v)
∂

∂xi

∣∣∣∣
π(v)

for v ∈ TU, where π : TM→ M is the canonical projection. We abbreviate

∂

∂xi =: ∂i,
∂

∂yi =: ∂̇i;

these are vector fields on TU. At any rate, we will express our results in coordinate-free
and geometric terms.

2.1. Anisotropic Tensors

We shall employ the framework of anisotropic tensors, following [20–22], as it is
simpler than previous ones. An open subset A ⊆ TM with π(A) = M is fixed; the elements
v ∈ A are called observers. We will denote by T r

s (MA) the space of (smooth) r-contravariant
s-covariant A-anisotropic tensor fields (r, s ∈ N ∪ {0}) and by T (MA) :=

⊕
r,s T r

s (MA)
the full anisotropic tensor algebra. F (A) = T 0

0 (MA) will be the space of functions on A.
This time we will also put X(MA) := T 1

0 (MA) for the space of anisotropic vector fields
and Ωs(MA) for the space of anisotropic s-forms (alternating anisotropic tensors, so that
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Ω1(MA) := T 0
1 (MA)). The space T (M) of classical tensor fields will be seen as a subspace

of T (MA), formed by the isotropic elements, namely, those which depend only on the point
p ∈ M and not on the observer at it. In particular, X(M) ⊆ X(MA). There is a distinguished
element of X(MA): the canonical (or Liouville) anisotropic vector field,

C = yi ∂i, Cv := v.

For an open set U ⊆ M; we will put XA(U) for the set of (local) observer fields, that is,
those V ∈ X(U) such that Vp ∈ A∩Tp M for all p ∈ U. Given one of these and T ∈ T r

s (MA),
their composition, denoted by TV ∈ T r

s (U), makes sense. Finally, for X ∈ X(MA), there is
also a canonical derivation ∂̇X : T r

s (MA)→ T r
s (MA): the vertical derivative along X,

(
∂̇XT

)
v := lim

t→0

Tv+tXv − Tv

t
,

(
∂̇XT

)i1,...,ir
j1,...,js

= X js+1 ∂̇js+1 Ti1,...,ir
j1,...,js .

2.2. Nonlinear and Anisotropic Connections

In this article, a nonlinear connection on A→ M is defined as a (horizontal) subbundle
HA ⊆ TA such that TA = HA⊕VA, where VA := Ker(dπ)|A is the vertical subbundle.
For other options and the rudiments, see [20]. Nonlinear connections are characterized by
their nonlinear coefficients Ni

j ,

Hv A = Span{ δi|v}, δi :=
δ

δxi :=
∂

∂xi − N j
i

∂

∂yj , (1)

and also by their nonlinear covariant derivative DX : XA(U)→ X(U),

DXV := X j
(

∂Vi

∂xj + Ni
j (V)

)
∂i, (2)

for X ∈ X(U). They also provide (at least locally) a nonlinear parallel transport of observers
v ∈ A ∩ Tγ(0)M along curves γ : [0, t]→ M. Namely, a map Pt : Aγ(0) → Aγ(t) defined as
Pt(v) = V(t), being V the only vector field along γ such that V(0) = v and Dγ̇V = 0 (see
(Definition 12 in [20]) and the comment below).

An A-anisotropic connection is an operator ∇ : X(M) × X(M) → X(MA) satisfying
the usual Koszul derivation properties—see [17,21,22]. In a chart domain U, they are
characterized by their Christoffel symbols Γi

jk : A ∩ TU → R,

∇∂j
∂k =: Γi

jk∂i.

They can be seen as vertically trivial linear connections on the vector bundle VA→ A
(Theorem 3 in [20]). On the other hand, every anisotropic connection has an underlying
nonlinear connection, the only one with nonlinear coefficients

Ni
j := Γi

jkyk.

As a consequence, they define the covariant derivative ∇ : T r
s (MA) → T r

s+1(MA) for
any anisotropic tensor:

∇js+1 Ti1,...,ir
j1,...,js = δjs+1 Ti1,...,ir

j1,...,js +
r

∑
µ=1

Γ
iµ
js+1kTi1,...,k,...,ir

j1,...,js −
s

∑
ν=1

Γk
js+1 jµ Ti1,...,ir

j1,...,k,...,js
.

2.3. Lorentz–Finsler Metrics

From now on, we will always assume that A is conic (λv ∈ A for v ∈ A and λ ∈
(0, ∞)). We shall follow the definitions and conventions in [20,23]. In particular, a Finsler
spacetime (M, L) is a (connected) manifold M endowed with a (properly) Lorentz–Finsler
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metric L : A ⊆ TM \ 0 → [0, ∞). L is required to be smooth, positive homogeneous, and,
when restricted to each Ap := Tp M ∩ A (p ∈ M), its vertical Hessian g is non-degenerate
with signature (+,−, . . . ,−); Ap must be connected and salient, and its boundary in TM \ 0,
which must be equal to L−1(0), is a (strong) cone structure C. In particular, at each point p,
L is a Lorentz norm. By positive homogeneity, L is determined by its indicatrix L−1(1).

Notice that the cone C yields a natural notion of timelike, lightlike, and spacelike
tangent vectors, but L is not defined on the latter. Indeed, we are not interested in the value
of L on spacelike vectors by physical reasons, which are analyzed in [6]. Roughly, only
particles (massive, massless) can be measured, and, so, experimental evidences only can
affect Σ and C. Even though this also happens in classical relativity, the value of the Lorentz
metric on the (future-directed) timelike vectors is enough to extend it to all the directions.
Indeed, the anisotropies in Finsler spacetimes should be regarded as originated by the
distribution of matter and energy in the causal directions rather than by (unobservable)
spacelike anisotropies.

Even though it is the Lorentz–Finsler case that has a physical interpretation, in all other
aspects, the theory carries on if L is just pseudo-Finsler, namely, positively 2-homogeneous
with non-degenerate g on A. In fact, this is the context in which we will develop Sections 4
and 5, as they are of a more mathematical character.

The Cartan tensor of L is

C :=
1
2

∂̇g, Cijk =
1
2

∂gij

∂yk .

It is actually symmetric, so one can define the mean Cartan tensor as

Cm(X) := traceg{C(X,−,−)}, (Cm)j = gikCijk =: Cj, (3)

for X ∈ X(MA). L has also a canonically associated connection: the metric nonlinear
connection, HA, of nonlinear coefficients

Ni
j := γi

jkyk − Ci
jkγk

abyayb, γi
jk :=

1
2

gic
(

∂gcj

∂xk +
∂gck

∂xj −
∂gjk

∂xc

)
. (4)

This is the underlying nonlinear connection of several anisotropic connections. One
is the (Levi–Civita)–Chern ∇, the only symmetric anisotropic connection that parallelizes
g. It is the horizontal part of Chern–Rund’s and Cartan’s classical connections, and it has
Christoffel symbols

Γi
jk :=

1
2

gil
(

δgl j

δxk +
δglk

δxj −
δgjk

δxl

)
, (5)

where the δi are those associated with (4). Another one is the Berwald ∇̂. This is the horizon-
tal part of Berwald’s and Hashiguchi’s classical connections, and it has Christoffel symbols

Γ̂i
jk :=

1
2

gil
(

δgl j

δxk +
δglk

δxj −
δgjk

δxl

)
+ Lani

jk. (6)

Here, Lani
jk are the components of a tensor metrically equivalent to the Landsberg tensor

of L, which, among many other methods, can be defined as

Lanijk :=
1
2

glm∂̇i ∂̇jNl
kym

for the Nl
k of (4) (see (37 in [21])). The Landsberg tensor is actually symmetric too, so one

can define the mean Landsberg tensor of L as

Lanm(X) := traceg{Lan(X,−,−)}, (Lanm)j = gikLanijk =: Lanj. (7)
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3. Basic Interpretations on the Stress–Energy Tensor T

Let us start with a discussion at each event p ∈ M of a Finsler spacetime (M, L). We
can consider Tp M endowed with the Lorentz norm L|Tp M. In most of this section, the
discussion relies essentially on the particular case when M is a real affine n-space with
associated vector space V (which plays the role of Tp M in the general case) and L is a
Lorentz–Finsler norm on V with indicatrix Σ and cone C included in V. Given u, u′ ∈ Σ,
consider the corresponding fundamental tensors gu and gu′ and take orthonormal bases Bu,
Bu′ , obtained extending u, u′. In a natural way, these bases live in TuV, Tu′V, and they can
be identified with bases in V itself. Assuming this, the change in coordinates between Bu,
Bu′ is linear but not a Lorentz transformation, in general.

Extending the interpretations in relativity, p ∈ M is an event; the affine simplification
includes the case of Very Special Relativity [7,8,10]; u ∈ Σ can be regarded as an observer;
the tangent space to the indicatrix TuΣ (i.e., the subspace gu-orthogonal to u in TuV ≡ V)
becomes the rest-space of the observer u; and Bu is an inertial reference frame for this ob-
server. The Lorentz invariance breaking corresponds to the fact that the bases Bu and Bu′

are orthonormal for the different metrics gu, gu′ , and, thus, the linear transformation be-
tween the coordinates of Bu and Bu′ (when regarded as elements of the same vector space
TuV ≡ V ≡ Tu′V) is not a Lorentz one. If the affine simplification is dropped, such elements
(observers and rest-spaces) must be regarded as instantaneous at p ∈ M.

It is worth emphasizing that, according to the viewpoint introduced in [14] and
discussed extensively in [6], the space-like directions are not physically relevant for the
Lorentz–Finsler metric. However, each (instantaneous) observer does have a restspace with
a Euclidean scalar product. In the case of classical relativity, Lorentz-invariance permits
natural identifications between these rest-spaces, and they become consistent with the
value of the scalar product on space-like directions. Certainly, a Lorentz norm L could be
extended outside these directions (maintaining the Lorentz signature for its fundamental
tensor), but this can be done in many different ways, and no relation with the scalar
products gu, u ∈ Σ would hold.

The dropping of natural identifications associated with the Lorentz invariance implies
that many notions that are unambiguously defined in classical relativity admit many
different alternatives now. In the Appendix, we analyze some of them for the relative
velocity between observers as well as other kinematical concepts. This is taken into account
in the following discussion about how the Finslerian setting affects the notion of the
energy–momentum–stress tensor.

3.1. Particles and Dusts: Anisotropic Picture of Isotropic Elements

In principle, there is no reason to modify the classical relativistic interpretation of
p = mu as the (energy-) momentum vector of a particle of (rest) mass m > 0 moving in the
observer’s direction u ∈ Σ. Moreover, if the particle moves in such a way that m is constant,
it will be represented by a unit time-like curve γ(τ) such that p(τ) = mγ′(τ) will be its
instantaneous momentum at each proper time τ. The (covariant) derivative p′ = mγ′′ would
be the force F acting on the particle, which is necessarily gγ′ -orthogonal to γ′ (i.e., the force
lies in the instantaneous rest-space of the particle). Then, the relativistic conservation of
the momentum in the absence of external forces would retain its natural meaning, namely,
if the particle represented by (m, γ) splits into two (m1, γ1) and (m2, γ2) at some τ0 then
mγ′(τ0) = m1γ′1(τ0) + m2γ′2(τ0).

The Appendix suggests that the way how an observer u may measure the energy-
momentum and conservation may be non-trivial. In particular, if one assumes that
an observer u measures mγ′ ∈ Tp M by using a gu-orthonormal basis Bu in general,
gu(mγ′, mγ′) 6= m2(= L(mγ′)). Moreover, as we have already commented, the coordinates
for other observer u′ will not transform by means of Lorentz transformation. However, as
the transformation of their coordinates is still linear, and both of them will write consistently
mγ′(τ0) = m1γ′1(τ0) + m2γ′2(τ0) in their coordinates.
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Particles are also the basis to model dusts, which constitute the simplest class of
relativistic fluids. A dust is represented by a number-flux vector field N = nU, where U
represents the intrinsic velocity of the particle in the dust, i.e., a comoving observer, and n
is the density of the dust for each momentaneously comoving reference frame. Comparing
with the case of energy momentum, N is also an intrinsic object that lives at the tangent
space of each point, and U gives the privileged observer who measures n. However, the
measures of n by different observers involve different measures of the volume. As explained
in the Appendix, the length contraction may be fairly unrelated to the relative velocities
of the observers. This implies a more complicated transformation of the coordinates by
different observers. Anyway, the transformations between these coordinates would remain
linear, and, so, they could still agree in the fact that they are measuring the same intrinsic
vector field.

Summing up, in the case of both particles and dusts, one assumes that the physical
property lives in V (or, more properly, in each tangent space Tp M of the affine space),
and there is a privileged (comoving) observer u. The transformation of coordinates for
another observer u′ may be complicated, but, at the end, it is a linear transformation that
can be determined by specifying the geometric quantities that are being measured as well
as the geometry of Σ. Thus, by using the coordinates measured by each observer one could
construct and anisotropic vector field at each p ∈ M, which will fulfill some constraints,
as the measurement by one of the observers (in particular, the privileged one) would
determine the measurements by all the others.

3.2. Emergence of an Anisotropic Stress–Energy Tensor

The situation, however, is subtler for more general fluids, which are modeled classically
by a 2-tensor on the underlying manifold.

Let us start by recalling the Newtonian and Lorentzian cases. In Classical Mechanics,
one starts working in an orthonormal basis of Euclidean space to obtain the components
Tij of the Cauchy stress tensor, which give the flux of i-momentum (or force) across the
j-surface in the background. 2. The laws of conservation of linear momentum and static
equilibrium of forces imply that these components give truly a 2-tensor (linear in each
variable), and the conservation of linear momentum implies that this tensor is symmetric.

In the relativistic setting, each observer will determine some symmetric components
Tij in its rest-space by essentially the same procedure as above. Additionally, it constructs
T00, T0i, and Ti0 as the density energy and the energy flux across i-surface and i-momentum
density, resp. The interpretation of these magnitudes completes the symmetry. 3 T0i = Ti0

as well as the linearity in the 0-component. However, the bilinearity in the components
Tµν has been only ensured for vectors in the rest-space of the observer. In relativity, one
can claim Lorentz invariance in order to complete the reasons justifying that, finally, the
components Tµν will transform as a tensor4.

Nevertheless, it is not clear in Lorentz–Finsler geometry why the transformation of
the components Tij from an observer u to a second one u′ must be linear, taking into
account that they apply to space-like coordinates in distinct Euclidean subspaces and no
Lorentz-invariance is assumed. Indeed, the following simple academic example shows that
this is not the case.

Example 1. Assume that (M, L) is an affine space with a Lorentz norm with domain A and
consider the anisotropic tensor T = φ C⊗ C, where C is the canonical (Liouville) vector field, and
φ : Σ→ R is a smooth function, which is extended as a 0-homogeneous function on A. Then, for
each u ∈ Σ and w ∈ TuΣ, one has Tu(u, u) = φ(u), Tu(w, w) = 0, and Tu(u, w) = 0. In this
case, each Tu is a symmetric 2-tensor, but the information on T requires the knowledge of φ(u)
for all possible u ∈ Σ. Recall that this example holds even if (M, L) is the Lorentz–Minkowski
spacetime regarded as a Finsler spacetime (but no Lorentz-invariance is assumed for T).
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Therefore, the following issues about T appear:

(a) Observer dependence: even if we assume that the components Tµν measured by any
observer u are bilinear, and, then, it is a standard tensor, the components measured
by a second observer u′ may transform by a linear map, which depends on Σ as well
as the experimental method of measuring (as in the case of the energy–momentum
vector).

(b) Nonlinearity: it is not clear even why such a linear transformation must exist, as
bilinearity is only ensured in the direction of u and of its rest-space. Thus, the tensor
Tu measured by a single observer u would not be enough to grasp the physics of the
fluid at each event p ∈ M, as in the example above.

(c) Contribution of the anisotropies of Σ: as an additional possibility, the local geometry of
Σ at u underlies the measurements of this observer and might provide a contribution
for the stress–energy tensor itself.

Summing up, Lorentz–Finsler geometry leads to assume that the measurements by u
are not enough to determine the state of the fluid, and the stress-energy tensor should be re-
garded as a non-isotropic tensor field, determined by the measurements of all the observers.

Formally, this means an anisotropic tensor T ∈ T 2
0 (MA) (see [20] for a summary of the

formal approach), which can be expressed locally as

Tv = Tµν(v)∂µ

∣∣
x ⊗ ∂ν|x ∀v ≡ (x, y) ≡ yµ ∂

∂xµ

∣∣∣∣
x
∈ A ⊂ TM,

where Tµν(λv) = Tµν(v) for all λ > 0 (i.e., Tv depends only on the direction of v). As a
first approach , we can assume Tµν = Tνµ (recall Appendix A.5). Consistently, we will
assume that there exists a Lorentz–Finsler metric L on M with indicatrix Σ ⊂ TM, and, so,
indexes can be raised and lowered by using its fundamental tensor g. The fact that T has
order 2 is important to establish classical analogies. However, other tensors might appear
as more fundamental energy-momentum tensors, and, then, one would try to derive a
semi-classical 2-tensor as in Section 3.3.

In principle, the intuitive relativistic interpretations would be transplanted directly to
each v, whenever v ∈ Σ. That is, given two gv-unit vectors u, w, the value Tv(u, w) of the
2-covariant stress–energy tensor perceived by the observer v (at x = π(v)) is obtained as
the flux of w-energy-momentum per unit of gv-volume orthogonal to u. More precisely, let
B(u) be a small coordinate 3-cube in a hypersurface gv-orthogonal to u, and PB is the total
flux of the energy-momentum of particles crossing B(u) (being positive from the −u side
to the u side and negative the opposite direction), then the w-energy-momentum per unit
of gv-volume is

ε Tv(u, w) := lim
Volgv (B(u))→0

gv(PB, w)

Volgv(B(u))
.

where ε = gv(w, w). As a Finslerian subtlety, recall that gv is only defined in Tv(Tx M) and
then in Tx M (i.e., it is trivially extended to B(u) in a coordinate-depending way), but the
above limit depends only on the value of gv. Namely, if one considers two semi-Riemannian
metrics g and g̃ in a neighborhood of p such that gp = g̃p and Bn are open subsets with p in
the interior of Bm for all n ∈ N and limn→+∞ volg(Bm) = 0, then

lim
m→+∞

volg(Bm)

volg̃(Bm)
= 1.

In particular, we have the interpretations (recall signature (+,−,−,−)):
1. Tv(v, v) is the energy density measured by v ∈ Σ,

Tv(v, v) := lim
Volgv (B(v))→0

gv(PB, v)
Volgv(B(v))

= lim
Volgv (B(v))→0

EB
Volgv(B(v))

,
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being EB := gv(PB, v) the measured energy.
2. If w is gv-orthogonal to v and gv-unit, Tv(w, v) measures the flow of energy per unit

of gv-volume in a surface gv-orthogonal to v and w (i.e., some small surface of area A
flowing a lapse ∆t), while Tv(v, u) measures the w-momentum density,

Tv(w, v) := lim
Volgv (B(w))→0

gv(PB, v)
Volgv(B(w))

= lim
Volgv (A)→0

1
A

{
lim

∆t→0

EB
∆t

}
.

−Tv(v, w) := lim
Volgv (B(v))→0

gv(PB, w)

Volgv(B(v))
.

3. If z, w are gv-orthogonal to v and gv-unit, Tv(z, w) measures the flow of w-momentum
per unit of gv-volume in a surface gv-orthogonal to v and z,

−Tv(z, w) := lim
Volgv (B(z))→0

gv(PB, w)

Volgv(B(z))
= lim

Volgv (A)→0

1
A

{
lim

∆t→0

gv(PB, w)

∆t

}
.

3.3. Lagrangian Viewpoint

In the Lagrangian approach for Special Relativity, the background spacetime is as-
sumed to be endowed with a flat metric η. So, the Lagrangian L is constructed by
using the prescribed η and some matter fields φα. The stress–energy tensor coincides
with the canonical energy–momentum tensor associated with the Lagrangian, in most
cases (the exceptions include theories involving spin). This canonical tensor appears as
the Noether current associated with the invariance by spacetime translations (i.e., when
L(φα, ∂µφα, xµ) ≡ L(φα, ∂µφα)), namely5

Tµν =
∂L

∂(∂µφα)
∂νφα − ηµνL. (8)

In principle, these interpretations would hold unaltered for the case of an affine space with
a Lorentz norm, including the case of Very Special Relativity.

In General Relativity, however, the Lagrangian formulation introduces a background
Lagrangian independent of matter fields (the Einstein–Hilbert one, eventually with a
cosmological constant) and, then, a matter Lagrangian Lmatter, which includes a constant
of coupling with the background. Then, the safest way to define the stress–energy tensor
is the canonical one obtained as the corresponding action term δSmatter/δgµν in the Euler–
Lagrange equations6,

Tµν = −2
δLmatter

δgµν + gµνLmatter. (9)

Any tensor obtained in this way will have some advantages to play the role of a
stress–energy tensor, because it will be automatically symmetric (in contrast to (8)) and will
have vanishing divergence.

In the Finslerian setting, the variational viewpoint has been systematically studied
in a very recent study by Hohmann, Pfeifer, and Voicu [16]. Previously, the background
Lagrangian closest to the Einstein–Hilbert functional in the Finslerian setting had been
studied in [15,29]. Such a functional is obtained as the integral of the Ricci scalar function
on the indicatrix of the Lorentz–Finsler metric7 L. Taking into account this background
functional, they define the energy-momentum scalar function by taking the corresponding
variational action term (Formula (84) in [16]),

T = −2
L3

|g|
δLmatter

δL
.

Notice that, here, the functional coordinate for the Lagrangian is L, and, thus, an
(anisotropic) function rather than a 2-tensor is obtained. However, starting at this function
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some tensors become useful (Formulas (88) and (91) in [16]), in particular a canonically
associated (anisotropic Liouville) 2-tensor

Θµ
ν = T Cµ Cν

as in Example 1. Notice that, essentially, the information of these tensors is codified in T.
Even though such a tensor is justified by the procedure of Gotay–Mardsen in [30], some
issues as the following ones might deserve interest for a further discussion:

1. This is not the unique natural possibility to construct an anisotropic 2-tensor starting
at T. For example, an alternative would be the vertical Hessian,

Tµν = ∂̇µ,νT ≡
∂2T

∂yµ∂yν
. (10)

It is natural to wonder about the choice closer to the relativistic intuitions about the
stress–energy tensor.

2. Recently, the Palatini approach has also been studied for the Finslerian setting [17].
There, the dynamic variables are L and the components of an (independent) non-
linear connection. Thus, a similar Lagrangian procedure would lead to a higher-order
tensor. In the relativistic setting, this approach supports classical relativity, as it
recovers both equations and (in the symmetric case) the Levi–Civita connection.
However, the Palatini approach is no longer equivalent in the Finslerian case, as
it yields non-equivalent connections, and it shows a variety of possibilities for the
non-linear connections. So, it is natural to wonder about the most natural choice of a
Lagrangian-based stress–energy tensor in this setting.

Finally, let us discuss an example analyzed from the Lagrangian viewpoint in [1,16]
taking into account also the observers’ one in Section 3.2.

Example 2. The gravitational field sourced by a kinetic gas has been deeply studied in [1,16]. In
the relativistic setting, this is derived from the Einstein–Vlasov equations in terms of a 1-particle
distribution function (1PDF) φ(x, ẋ), which encodes how many gas particles at a given spacetime
point x propagate on worldlines with a normalized 4-velocity ẋ. Specifically, the stress energy
tensor is:

Tµν(x) =
∫

Σx
ẋµ ẋνφ(x, ẋ)dvolgx , x ∈ M,

being Σx the indicatrix (future-directed unit vectors of the Lorentz metric) and dvolgx the volume
element induced by the scalar product gx at each x. In [1], they propose to derive the gravitational
field of a kinetic gas directly from the 1PDF without averaging, i.e., taking into account the
full information on the velocity distribution. This leads to consider the function φ : Σ → R,
u ≡ (x, ẋ) 7→ φ(u) ≥ 0 as an energy–momentum function, which plays the role of a stress–energy
tensor (even though it is a scalar rather than a 2-tensor). Moreover, the original Lorentz metric is
naturally allowed to be Lorentz–Finsler, which permits to obtain more general cosmological models
(Section III in [1]).

Indeed, up to a coupling constant, φ is regarded directly as the matter source in the Finslerian
Einstein–Hilbert equation (i.e., it is placed at the right-hand side of this equation, (Equation (7)
in [1])). It is worth pointing out:

• φ can be reobtained as a Lagrangian energy-momentum by inserting it directly as a term in
the background Lagrangian (Equation (75) in [16]). However, the Lagrangian is not natural
then, as φ is written in terms of x, ẋ (recall (Appendix 3, Section (a) in [16])).

• As discussed above, such a function allows one to construct several tensors, in particular, the
vertical Hessian ∂2φ/∂ẏµ∂ẏν (as in (10)), which also might play a role to compare with the
relativistic Tµν(x).
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Anyway, starting at the 1PDF φ, another Finslerian interpretation would be possible. In
particular, one can define the energy–momentum distribution φ(u)u. Then, given an observer
v ∈ Σ and a gv-unit vector, the w-energy–momentum might be defined as

gv(u, w)φ(u).

n particular, when w = v, this would be the energy perceived by v, and when w is unit and gv-
orthogonal to v would be (minus) the momentum in the direction w (compare with the discussion
at the end of Section 3.2). So, an alternative stress–energy tensor perceived by each observer v ∈ Σ
might be defined as the anisotropic tensor:

Tv(w, z) =
∫

Σπ(v)

gv(u, w)gv(u, z)φ(u)dvolgv ,

where the integration in u is carried out with the volume form of (Sectionigmaπ(v), gv), denoted
by dvolgv .

4. Divergence of Anisotropic Vector Fields

After studying the basic properties of the Finslerian stress–energy tensor T, our
next aim was to analyze the meaning and significance of the infinitesimal conservation law
div(T) = 0. Along this and the next section, we will always consider an anisotropic tensor
T ∈ T 1

1 (MA) interpreted as an endomorphism of anisotropic vector fields. T[ ∈ T 0
2 (MA)

and T] ∈ T 0
2 (MA) will be defined on vectors and 1-forms by T[(X, Y) := g(X, T(Y)) and

T](θ, η) := g∗(T∗(θ), η) resp., where g∗ is the inverse fundamental tensor, and T∗ is the

transpose of T. They will have components
(

T[
)

ij
= gilTl

j =: Tij and
(

T]
)ij

= Ti
l gl j =: Tij,

and in principle we will not even assume that these are symmetric. We will be assuming
that M is orientable and oriented. This is not restrictive: one could always reduce the
theory to this case by pulling back all the objects (the fibered manifold A→ M included) to
the oriented double cover of M (Chapter 15 in [31]).

Let us briefly recall the mathematically precise meaning of the conservation laws in
classical General Relativity (g, T, and X isotropic). One has

div(T(X)) = ∇i(Ti
j X j) = ∇iTi

j X j + Ti
j∇iX j = div(T)(X) + trace(T(∇X)) (11)

with ∇ the Levi–Civita connection. The first contribution vanishes due to div(T) = 0, and
there are different situations in which the second one vanishes as well. For instance, if
T[(−,∇−X) is antisymmetric, then

trace(T(∇X)) = Ti
j∇iX j = gilTl j∇iX j =

1
2

gil
(

Tl j∇iX j + Tij∇lX j
)
= 0, (12)

and if T[ is symmetric and ∇X] is antisymmetric (equiv., X is a Killing vector field),
then also

trace(T(∇X)) = gilTl j∇iX j =
1
2

Tl j

(
gli∇iX j + gji∇iXl

)
= 0. (13)

Anyway, whenever trace(T(∇X)) = 0, one can integrate (11) and apply the pseudo-
Riemannian divergence theorem to get the integral conservation law∫

∂D
ıT(X)(dVol) = 0, (14)

where D is a domain of appropriate regularity, ı is the interior product operator, and dVol is
the metric volume form. In a sense that will be made more precise in §5, this is expressing
that the total amount of X-momentum in a space region only changes along time as much
as it flows across the spatial boundary of the region. In this way, there is no “creation” nor
“destruction” of X-momentum in any space region.
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Extending the infinitesimal or the integral conservation laws poses, first and foremost,
the problem of appropriately defining the divergence of an anisotropic T. Observe that a
priori it is not clear even how to define the divergence of a vector field Z, isotropic or not,
as one could consider trace(∇Z) for different anisotropic connections ∇, mainly Chern’s
and Berwald’s. An alternative is to seek for a more geometric, hence, unbiased, definition.
For instance, the metric (anisotropic) volume form of L,

dVol =
√
|det gab(x, y)|dx1 ∧ · · · ∧ dxn ∈ Ωn(MA) (15)

for (x1, . . . , xn) positively oriented, is well-defined, and when Z ∈ X(M) (i.e., Z is isotropic),
so is the Lie derivative

LZ : T (MA)→ T (MA)

(see § 5 in [21]). So, by analogy with the classical case, one could think of LZ(dVol) for
defining div(Z).

It turns out that the unbiased definition, including all Z ∈ X(MA), is achieved with
a modification of this Lie derivative that we will regard as an extension of the classical
Lie bracket. We devote the next subsection to the technical mathematical foundations
of such an anisotropic Lie bracket, which needs of a nonlinear connection on A → M to
be well-defined. All the maps T (MA) → T (MA) that will appear in Section 4.1 will be
(anisotropic) tensor derivations in the sense of (Definition 2.6 in [21]), and their local nature
will be apparent, so we will not explicitly discuss it. For example, the Lie derivative along
Z ∈ X(M) is the only tensor derivation such that for X ∈ X(M) and f ∈ F (A),

LZX = [Z, X], LZ f = Zc( f ) := Zk ∂ f
∂xk + yk ∂Zi

∂xk
∂ f
∂yi . (16)

4.1. Mathematical Formalism of the Anisotropic Lie Bracket

During this subsection, we fix an arbitrary nonlinear connection given by TA =
HA⊕VA or by the nonlinear covariant derivative D (keep in mind (1) and (2)), and also
an anisotropic vector field Z ∈ X(MA)

For X ∈ X(MA), it is very natural to consider the commutator of the horizontal lifts of
Z and X:[

ZH, XH
]
=
[

Zjδj, Xkδk

]
=
(

ZjδjXi − X jδjZi
)

δi + ZjXk[δj, δk
]
∈ X(A).

We recall that ZjXk[δj, δk
]

is always vertical. Indeed,
[
δj, δk

]
= Ri

jk ∂̇i, whereR is the
curvature tensor of the nonlinear connection (see [17], where this curvature is regarded
as an anisotropic tensor and the homogeneity of the connection is not really required).
This means that the horizontal part of

[
ZH, XH] has coordinates ZjδjXi − X jδjZi, and this

corresponds to a globally well-defined A-anisotropic vector field:

lHZ X :=
(

ZjδjXi − X jδjZi
)

∂i ∈ X(MA). (17)

Definition 1. lHZ X is the anisotropic Lie bracket of Z and X with respect to the nonlinear
connection HA.

Remark 1. The word “anisotropic” could be omitted in the previous definition, in the sense that for
Z, X ∈ X(MA), there is no other Lie bracket, isotropic or not, defined in general. Nonetheless, (17)
makes apparent that when Z, X ∈ X(M) (i.e., when Z and X are isotropic), lHZ X coincides with the
standard Lie bracket [Z, X] regardless of the connection.
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Lemma 1. Given a nonlinear connection HA, V ∈ XA(U), f ∈ F (A) and anisotropic vector
fields X, Z ∈ X(MA), it holds that

ZH( f ) = Z( f (V))− ∂̇DZV f , (18)(
lHZ X

)
V
= [ZV , XV ]−

(
∂̇DZV X

)
V +

(
∂̇DXV Z

)
V . (19)

Proof. Observe that

Z( f (V))− ∂̇DZV f = Zi
(

∂ f
∂xi (V) +

∂ f
∂yj (V)

∂V j

∂xi

)
− ∂ f

∂yj (V)Zk
(

∂V j

∂xk − N j
k(V)

)
= Zi

(
∂ f
∂xi (V)− ∂ f

∂yj (V)N j
i (V)

)
= ZH( f ),

which concludes (18). In particular, δi f (V) = ∂i( f (V)) −
(

∂̇D∂i
V f
)
(V), and using this

in (17), (19) follows.

We also recall that the torsion of an A-anisotropic connection∇ (18 in [21]), (Definition 5
in [20]) is the anisotropic tensor Tor ∈ T 1

2 (MA) defined first on isotropic fields Z, X ∈ X(M)
by Tor(Z, X) = ∇ZX −∇XZ− [Z, X] and then extended by F (A)-bilinearity. Therefore,
it can be regarded as and F (A)-bilinear map Tor : X(MA) × X(MA) → X(MA) and it
has coordinates

Tori
jk = Γi

jk − Γi
kj, (20)

where the Γi
jk’s are the Christoffel symbols of ∇8.

Theorem 1. Let a nonlinear connection TA = HA⊕ VA and an anisotropic vector field Z ∈
X(MA) be fixed.
(A) If ∇ is any A-anisotropic connection whose underlying nonlinear connection is HA, then for
any X ∈ X(MA),

Tor(Z, X) = ∇ZX−∇XZ− lHZ X (21)

(where Tor is the torsion of ∇).
(B) By imposing the Leibniz rule with respect to tensor products and the commutativity with
contractions, the map X 7→ lHZ X extends unequivocally to an (anisotropic) tensor derivation
lHZ : T r

s (MA)→ T r
s (MA) given by

lHZ T(θ1, . . . , θr, X1, . . . , Xs) = ZH(T(θ1, . . . , θr, X1, . . . , Xs))

−
r

∑
µ=1

T(θ1, . . . , lHZ θµ, . . . , θr, X1, . . . , Xs)

−
s

∑
ν=1

T(θ1, . . . , θr, X1, . . . , lHZ Xν, . . . , Xs)

(22)

for θµ ∈ Ω1(M) and Xν ∈ X(M). In coordinates, if

T = Ti1,...,ir
j1,...,js (x, y)∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs ,

then (
lHZ T

)i1,...,ir

j1,...,js
= Zk

δTi1,...,ir
j1,...,js

δxk −
r

∑
µ=1

δZiµ

δxk Ti1,...,k,...,ir
j1,...,js +

s

∑
ν=1

δZk

δxjν
Ti1,...,ir

j1,...,k,...,js
. (23)
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(C) The map

LH
Z := lHZ − ∂̇lHZ C : T (MA)→ T (MA)

is also a tensor derivation. When Z ∈ X(M),

LH
Z T = LZT (24)

for all T ∈ T (MA), where LZ is the Lie derivative (16), regardless of the nonlinear connection.
(D) Given V ∈ XA(U) and ω ∈ Ωn(MA) (n = dim M), it holds that(

lHZ ω
)

V
= LZV (ωV)− ∂̇DZVω− trace(∂̇DV Z)ω. (25)

Proof. (A) It is straightforward to compute that the right-hand side of (21) is F (A)-
multilinear. Moreover, the identity is trivial on isotropic vector fields X, Z ∈ X(M), as
lHZ X = [X, Z] in this case, which concludes.

(B) Given f ∈ T 0
0 (MA) = F (A), for X ∈ T 1

0 (MA) = X(MA) it follows from (17) that

lHZ ( f X) = ZH( f )X + f lHZ X.

Thus, in order to respect the Leibniz rule, the only possibility is to define

lHZ f = ZH( f ) = Zk δ f
δxk . (26)

Now, given θ ∈ T 0
1 (MA) = Ω1(MA), in order to respect again the Leibniz rule and the

commutativity with contractions, the only possibility is to define lHZ θ on every X ∈ X(MA) by

(
lHZ θ
)
(X) = ZH(θ(X))− θ(lHZ X) =

(
Zk δθj

δxk +
δZk

δxj θk

)
X j. (27)

(26), (17), and (27) make apparent that lHZ is already local on functions, vector fields, and
1-forms, and they allow to compute

lHZ (∂i) = −
δZk

δxi ∂k, lHZ (dxj) =
δZj

δxk dxk. (28)

Finally, given T ∈ T r
s (MA), one is led to define lHZ T by (22). Clearly, this indeed provides a

tensor derivation and (23) follows from the evaluation of (22) at (dxi1 , . . . , dxir , ∂j1 , . . . , ∂js)
together with (26) and (28).

(C) ∂̇X : T (MA)→ T (MA) is a tensor derivation for any X ∈ X(MA), in particular for

X = lHZ C =
(

Zjδjyi − yjδjZi
)

∂i = −
(

ZjNi
j + yjδjZi

)
∂i (29)

(see (17)). Thus, the difference LH
Z = lHZ − ∂̇lHZ C is again a derivation. As for the last assertion,

where Z ∈ X(M), we are going to use (Proposition 2.7 in [21]). For X ∈ X(M), we have

LH
Z X = lHZ X = [Z, X] = LZX (30)

(recall Remark 1). For f ∈ F (A), we have
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LH
Z f = lHZ f − ∂̇lHZ C f = Zjδj f +

(
ZjNi

j + yjδjZi
)

∂̇i f

= Zj
(

∂j f − Ni
j ∂̇i f

)
+
(

ZjNi
j + yjδjZi

)
∂̇i f

= Zj∂j f + yjδjZi ∂̇i f

= LZ f

(see (26), (29), (1), and (16)). As LH
Z and LZ act the same on isotropic vector field and

anisotropic functions, they are equal.
(D) Observe that for X ∈ X(M), the term ∂̇DZV X vanishes in (19). Moreover, if

Z ∈ X(MA) and f ∈ F (A), then ZH( f )V = ZV( f (V)) −
(
∂̇DZV f

)
(V). Given a local

reference frame E1, . . . , En ∈ X(U), and taking into account the last two identities and the
definitions of lH and L, it follows that(

lHZ ω
)

V
(E1, . . . , En)− LZV (ωV)(E1, . . . , En) = −∂̇DZVω(E1, . . . , En)

−
n

∑
i=1

ω(E1, . . . , ∂̇DEi
V Z, . . . , En).

As ω(E1, . . . , ∂̇DEi
V Z, . . . , En) = E∗i (∂̇DEi

V Z)ωV(E1, . . . , En), (25) follows.

Definition 2. The tensor derivation lHZ : T (MA) → T (MA) defined in Theorem 1 (B) is the
(anisotropic) Lie bracket with Z, while LH

Z : T (MA) → T (MA) is the (anisotropic) Lie
derivative along Z, both of them with respect to the connection HA.

Remark 2 (Anisotropic Lie bracket and Lie derivative). The derivation LH
Z defined in Theorem 1

(C) would be the Lie derivative along Z with respect to HA. Analogously to the discussion of
Remark 1, what makes this name consistent is (24): whenever the Lie derivative along Z was already
defined, LH

Z coincides with it. Even though the Lie bracket and the Lie derivative are equal in the
classical regime, it is heuristically useful to regard lH as the anisotropic generalization of the former
and LH as that of the latter, in order to distinguish them. It is actually lH, and not L, which will be
relevant for the definition of divergence. The reason is that the former, as we will see below, has a
clear geometric interpretation in terms of flows, while the latter would just add the term ∂̇lHZ C to that
interpretation. Moreover, Theorem 1 (D) actually corresponds to a Cartan formula for LZ whose
full development we postpone for a future work. Thus, LZ(dVol) = LH

Z (dVol) can be regarded as
an initial guess for the divergence of Z, but we will not employ LH from now on.

Let us observe that given a diffeomorphism ψt : M→ M that is the flow of an isotropic
vector field Z, we can define the pullback ψ∗t (ω) of an anisotropic differential form ω ∈
Ωs(MA) as the anisotropic form given by ψ∗t (ω)v(u1, . . . , us) := ωPt(v)(dψt(u1), . . . , dψt(us)),
where Pt(v) is the HA-parallel transport of v along the integral curve of Z and u1, . . . , us ∈
Tπ(v)M.

Proposition 1. If Z ∈ X(M) and ω ∈ Ωs(MA), then

lHZ ω = lim
t→0

ψ∗t (ω)−ω

t
, (31)

where ψt is the (possibly local) flow of Z.

Proof. Observe that ψ∗t (ω)v can be obtained as ψ∗t (ωV) with V an extension of v such that
DZV = 0. Then (25) and the classical formula for the Lie derivative in terms of the flow
imply (31).
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Remark 3. Even though, for convenience, we stated the previous geometrical interpretation for an
s-form ω, it should be clear that it holds true for any r-contravariant s-covariant A-anisotropic tensor.

4.2. Lie Bracket Definition of Divergence

Finally, in this and the next subsections a pseudo-Finsler metric L defined on A is
fixed again. In its presence, and in view of the Riemannian case and Proposition 1, the most
natural way of defining the divergence of an anisotropic vector field Z is by lHZ (dVol). Here
there is a canonical choice for HA: the metric nonlinear connection of L. The definition
obtained this way is unbiased, in that one does not choose any anisotropic connection a
priori. Notwithstanding, it will turn out to be most conveniently expressed in terms of the
Chern connection.

Definition 3. For Z ∈ X(MA), its divergence with respect to the pseudo-Finsler metric L is
the anisotropic function div(Z) ∈ F (A) defined by

lHZ (dVol) =: div(Z)dVol,

where HA and dVol are the metric nonlinear connection (4) and the metric volume form (15) of L,
resp.

Remark 4. Even though we will keep assuming it for simplicity, the hypothesis of M being
orientable is not really needed for this definition. As in pseudo-Riemannian geometry, on small
enough open sets U ⊆ M it is always possible to choose an orientation, define dVolU ∈ Ωn(MA)
with respect to it and put div(Z)|A∩TUdVolU := lHZ (dVolU). The different definitions will be
coherent because when the orientation changes, dVolU changes to −dVolU and

lHZ (−dVolU) = −lHZ (dVolU) = −div(Z)|A∩TUdVolU = div(Z)A∩TU(−dVolU).

In particular, when M is orientable, div(Z) is independent of the orientation choice.

Proposition 2. Let L be a fixed pseudo-Finsler metric defined on A, and let Z ∈ X(MA). If ∇
is any symmetric A-anisotropic connection such that its underlying nonlinear connection is the
metric one and ∇Z(dVol) = 0, then

div(Z) = trace(∇Z), (32)

or in coordinates,

div(Z) =
δZi

δxi + Γi
ikZk (33)

This, in particular, is true for the (Levi-Civita)–Chern anisotropic connection of L, so one can
take the Christoffel symbols to be those of (5).

Proof. One expresses the Z-Lie bracket of the volume form in terms of the anisotropic
connection, analogously to the isotropic case. From (15) and the fact that lHZ is a tensor
derivation, we obtain

div(Z)
√
|det gab| = div(Z)dVol(∂1, . . . , ∂n)

= lHZ (dVol)(∂1, . . . , ∂n)

= lHZ (dVol(∂1, . . . , ∂n))−
n

∑
i=1

dVol(∂1, . . . , lHZ ∂i, . . . , ∂n).

(26) and the fact that HA is the underlying nonlinear connection of ∇ give

lHZ (dVol(∂1, . . . , ∂n)) = ZH(dVol(∂1, . . . , ∂n)) = ∇Z(dVol(∂1, . . . , ∂n)).
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(21) and Tor = 0

dVol(∂1, . . . , lHZ ∂i, . . . , ∂n) = dVol(∂1, . . . ,∇Z∂i, . . . , ∂n)− dVol(∂1, . . . ,∇∂i
Z, . . . , ∂n).

From these and ∇Z(dVol) = 0,

div(Z)
√
|det gab| = ∇Z(dVol(∂1, . . . , ∂n))−

n

∑
i=1

dVol(∂1, . . . ,∇Z∂i, . . . , ∂n)

+
n

∑
i=1

dVol(∂1, . . . ,∇∂i
Z, . . . , ∂n)

= ∇Z(dVol)(∂1, . . . , ∂n) +
n

∑
i=1

dVol(∂1, . . . ,∇∂i
Z, . . . , ∂n)

=
n

∑
i=1

dVol(∂1, . . . ,∇∂i
Z, . . . , ∂n)

= trace(∇Z)
√
|det gab|,

(34)

where the last equality is reasoned analogously as in the proof of (25).
For the Chern connection, it can be checked that∇(dVol) = 0 by considering a parallel

orthonormal basis with respect to a parallel observer V along the integral curves of any
vector field. The coordinate expression of trace(∇Z) in this case concludes (33).

4.3. Divergence Theorem and Boundary Term Representations

Our Lie bracket derivation allows us to obtain a statement of the Finslerian divergence
theorem that subsumes both Rund’s (3.17 in [18]) and Minguzzi’s (Theorem 2 in [19]).
This way, it does not need of computations in coordinates from the beginning nor of the
“pullback metric” (gV in our notation). Naturally, our statement does not include Shen’s
(Theorem 2.4.2 in [32]), as this one is an independent generalization of the Riemannian
theorem not dealing with anisotropic differential forms nor vector fields.

Lemma 2. For X ∈ X(MA), the vertical derivative of dVol is given by

∂̇X(dVol) = Cm(X)dVol, (35)

where Cm is the mean Cartan tensor of L (see (3)).

Proof. Let E1(t), . . . , En(t) be a positively oriented gv+tX-orthonormal basis for every
t ∈ [0, ε] for a certain ε > 0. Then dVolv+tX(E1(t), . . . , En(t)) = 1 for all t ∈ [0, ε]. This
implies that

∂̇X(dVol)v(E1(0), . . . , En(0)) +
n

∑
i=1

dVolv(E1(0), . . . , Ėi(0), . . . , En(0)) = 0.

Moreover, as gv+tX(Ei(t), Ei(t)) = ±1,

2Cv(Ei(0), Ei(0), X) + 2gv(Ėi(0), Ei(0)) = 0.

Using this relation above, we conclude (35).

In the present article, by a domain D we understand a nonempty connected set that
coincides with the closure of its interior D; then, its boundary is ∂D = ∂D. Physically, it is
very important to include examples in which different parts of ∂D have different causal
characters, and this tipically leads to the boundary not being totally smooth. Hence, we
will make a weaker regularity assumption that still allows one to apply Stokes’ theorem
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on D. A subset of M has 0 m-dimensional measure if its intersection with any embedded
m-dimensional submanifold σ ⊆ M is of 0 measure in the smooth manifold σ. Finally, the
interior product of an s-form ω with a vector field X will be

ıXω := ω(X,−, . . . ,−).

Theorem 2. Let L be a fixed pseudo-Finsler metric defined on A. If

(i) Z ∈ X(MA) is an anisotropic vector field,
(ii) V ∈ XA(U) is an A-admissible field with U ⊆ M open, and
(iii) D ⊆ U is a domain with ∂D smooth up to subset of 0 (n− 1)-dimensional measure on M

and Supp(ZV) ∩ D compact,

then ∫
D

div(Z)VdVolV +
∫

D

{
Cm(DZV) + trace(∂̇DV Z)

}
dVolV

=
∫

∂D
ıZV (dVolV),

(36)

where Cm is the mean Cartan tensor, and DV is computed with the metric nonlinear connection (4).

Proof. The idea is to apply Stokes’ theorem to LZV (dVolV). However, taking into account
(25) and Lem. 2, it follows that

LZV (dVolV) = lHZ (dVol)V +
{

Cm(DZV) + trace(∂̇DV Z)
}

dVolV ,

concluding (36).

Remark 5 (Riemannian and Finslerian unit normals). Let i : Γ ↪→ M be the inclusion of a
smooth open subset Γ ⊆ ∂D.

(i) Even though we do not use the pseudo-Riemannian metric gV to derive Theorem 2, from
our physical viewpoint it is natural to use it to re-express the boundary term. If Γ is
non-gV-lightlike, then for a gV-normal field N̂V and a transverse field X along i, the form

dσV := sgn(gV(N̂V , N̂V))

√∣∣∣gV(N̂V , N̂V)
∣∣∣

gV(N̂V , X)
i∗(ıX(dVolV)) ∈ Ωn−1(Γ) (37)

is nonvanishing and independent of X. In particular,

dσV =
1√∣∣∣gV(N̂V , N̂V)

∣∣∣ i
∗(ıN̂V

(dVolV))

is independent of the scale of N̂V , which we will always assume to be gV-unitary and
D-salient, so

dσV = i∗(ıN̂V
(dVolV))

coincides with the hypersurface gV-volume form of Γ. Taking into account that i∗(ıZV (dVolV))
vanishes wherever ZV is tangent to Γ and that gV(N̂V , N̂V) = ±1, (37) allows us to
represent and the right-hand side of (36) as∫

Γ
ıZV (dVolV) =

∫
Γ

gV(N̂V , N̂V)gV(N̂V , ZV)dσV . (38)

In fact, this is how Rund’s divergence theorem follows from Theorem 2.
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(ii) There is another way that one can try to represent the boundary term. Namely, assume
that there exists a smooth ξ : p ∈ Γ → ξp ∈ A ∩ Tp M with TpΓ = Ker gξp(ξp,−) and
L(ξp) = ±1 (in the Lorentz–Finsler case, it will necessarily be L(ξ) = 1). This is called a
Finslerian unit normal along Γ. Analogously as in (i), one can put

dΣξ
V := L(ξ)

1
gξ(ξ, X)

i∗(ıX(dVolV)) = i∗(ıξ(dVolV)),

∫
Γ

ıZV (dVolV) =
∫

Γ
εξ L(ξ)gξ(ξ, ZV)dΣξ

V ; (39)

here, due to the possible orientation difference between both sides,

εξ =

{
1, where ξ is D-salient,
−1 where ξ is D-entering.

In fact, this is how Minguzzi deduces his divergence theorem (Theorem 2 in [19]). Note,
however, that he does it under the hypothesis of vanishing mean Cartan tensor (Cm = 0),
which implies that dΣξ

V is independent of V. As we do not require this, Theorem 2 is more
general statement than Minguzzi’s.

(iii) The Finslerian unit normal presents some issues in the general case, as we are not taking
A = TM \ 0. In our physical interpretation, with L Lorentz–Finsler, A consists of timelike
vectors, so asking for a Finslerian unit normal is only reasonable when Γ is L-spacelike,
that is, TpΓ ∩ (A ∩ ∂A) = ∅ for p ∈ Γ. In such a case, the strong concavity of the
indicatrix

{
v ∈ Ap : L(v) = 1

}
guarantees the existence and uniqueness of ξ: one defines

ξp to be the unique vector such that TpΓ + ξp and the indicatrix are tangent at ξp.
(iv) Of course, if L comes from a pseudo-Riemannian metric on M, then ξ = εξ N̂V = εξ N̂

and dΣξ
V = εξ dσV = εξ dσ.

(v) It should be clear from this discussion that the form that one integrates on the right-
hand side of (36) is always the same and that the only difference between Rund’s and
Minguzzi’s divergence theorems is how each of them represents it. Notwithstanding, this
is an important difference, for the boundary terms (38) and (39) could potentially have
different physical interpretations.

5. Divergence of Anisotropic Tensor Fields

Our developments of the previous section will allow us to obtain integral Finslerian
conservation laws for a tensor T with div(T) = 0. We obtain one for each V ∈ XA(U)
satisfying certain hypotheses. Physically, T can be interpreted as an anisotropic stress–
energy tensor and V as an observer field. We will also revisit two of the main examples
with a clearer physical interpretation: Special Relativity and the conservation of the “total
energy of the universe.” In order to do all this, let us see how the Chern connection enters
the Finslerian definition of div(T).

5.1. Definition of Divergence with the Chern Connection

Proposition 2 motivates the most natural definition of divergence of T ∈ T 1
1 (MA).

Namely, by analogy with the classical case, we shall require (11) to hold for any anisotropic
vector field X ∈ X(MA). This makes the Chern connection appear now: it is the only
Finslerian connection ∇ for which one can assure that (32) holds independently of Z :=
T(X). We shall also explore the conditions under which the term trace(∇Z) vanishes in
the general Finslerian setting.

Proposition 3. Let L be a fixed pseudo-Finsler metric defined on A with metric nonlinear con-
nection HA and Chern anisotropic connection ∇. Also, let S ∈ T 0

2 (MA) be symmetric, v ∈ A,
T ∈ T 1

1 (MA) and X ∈ X(MA).
(A) The following are equivalent.
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(Ai) Sv(−,∇v
−X) is antisymmetric.

(Aii) ∇vX is anti-self-adjoint with respect to Sv, that is, Sv(∇v
−X,−) = −Sv(−,∇v

−X).
(Aiii)

(
lHX S
)

v = ∇v
XS.

(B) One has

div(T(X))− trace(T(∇X)) = C1
2(∇T)(X),

where C1
2 is the operator that contracts the contravariant index with the covariant one introduced

by ∇.
(C) One has trace(T(∇X))(v) = 0 assuming any of the following conditions.

(Ci) T[
v(−,∇v

−X) is antisymmetric.
(Cii) T[

v is symmetric and
(
lHX g
)

v = 0.

Proof. For (A), take Y, W ∈ X(M). The antisymmetry of Sv(−,∇v
−X) reads

Sv(∇v
YX, W) = Sv(W,∇v

YX) = −Sv(Y,∇v
W X),

which is exactly the anti-self-adjointness of ∇vX with respect to Sv. Besides, (26) and (21)
together with Tor = 0 for the Chern connection give

lHX S(Y, W)

= XH(S(Y, W))− S(lHXY, W)− S(Y, lHXW)

= XH(S(Y, W))− S(∇XY−∇YX, W)− S(Y,∇XW −∇W X)

= ∇XS(Y, W) + S(∇YX, W) + S(Y,∇W X),

(40)

which shows that
(
lHX S
)

v = ∇v
XS also is equivalent to the anti-self-adjointness.

For (B), all the computations in (11) hold formally the same in the general Finslerian
case due to Proposition 2.

As for the vanishing of trace(T(∇X))(v), it follows from (Ci) by the same computa-
tions as in (12). Indeed, the antisymmetry can be expressed as

Tl j(v)∇iX j(v) + Tij(v)∇lX j(v) = 0.

It also follows from (Cii) by (13). Indeed,
(
lHX g
)

v = 0 is equivalent to ∇vX being anti-self-
adjoint with respect to gv, and this can be expressed as

gli(v)∇iX j(v) + gji(v)∇iXl(v) = 0.

Remark 6 (lHX g and Finslerian Killing fields). In classical relativity (g, T, and X isotropic), the
second condition in (C ii) above would read (LX g)π(v) = 0, and LX g = 0 would be equivalent to
X being a Killing vector field. In the general case, X being Killing can be defined by the conditions
X ∈ X(M) and LX L = 0 (Section 5 in [21]), but (using Theorem 1 (C), the facts that ∂̇C = Id
and C(C,−,−) = 0, and also (40))
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LX L = LX(g(C, C))

= LX g(C, C) + 2g(LXC, C)

=
(
lHX g− ∂̇lHX Cg

)
(C, C) + 2g(lHX C− ∂̇lHX CC, C)

= lHX g(C, C)− 2C(C, C, lHX C) + 2g(lHX C− lHX C, C)

= lHX g(C, C)

= ∇g(C, C) + g(∇CX, C) + g(C,∇CX)

= 2g(C,∇CX)

This way, we see that neither of X being Killing or lHX g = 0 implies the other, and additionally
we recover the characterization of (Proposition 6.1 (i) in [33]).

Definition 4. Let L be a fixed pseudo-Finsler metric defined on A with (Levi-Civita–)Chern
anisotropic connection ∇. For T ∈ T 1

1 (MA), its divergence with respect to L is defined as

div(T) := C1
2(∇T) ∈ T 0

1 (MA) = Ω1(MA),

where C1
2 is the operator that contracts the contravariant index with the covariant one introduced

by ∇. In coordinates,
div(T)j = ∇iTi

j = δiTi
j + Γi

ikTk
j − Γk

ij T
i
k (41)

for the Christoffel symbols of (5).

Remark 7 (Divergence vs. raising and lowering indices).

(i) First and foremost, by construction, (11) indeed holds for any X ∈ X(MA). At this point,
it is important that the connection with which one defines trace(∇X) is the Chern one.

(ii) Thanks to the fact that the Chern connection parallelizes g, namely, ∇kgij = 0 and
∇kgij = 0, the following hold:

gik∇kTij = gikgil∇kTl
j = ∇kTk

j = div(T)j, (42)

∇iTij = ∇iTi
l gl j = gjldiv(T)l . (43)

This means that one could define the divergences of S ∈ T 0
2 (MA) and R ∈ T 2

0 (MA)

straightforwardly,9 div(S) = C1,3(∇S) ∈ T 0
1 (MA) = Ω1(MA) and div(R) =

C1
1(∇R) ∈ T 1

0 (MA) = X(MA), and then (42) and (43) would read, respectively

div(T[) = div(T),

div(T]) = div(T)].

(iii) Regardless of this, in general we are not assuming the symmetry of T[ or T]—we only did
in Proposition 3 (Cii). Instead, at the beginning of §5 we fixed a convention for the order of
the indices in Tij and Tij (for example, T[(X, Y) = g(X, T(Y)) 6= g(T(X), Y))—in the
remainder of §4 and with said condition (Cii) only.

5.2. Chern vs. Berwald

One needs to keep in mind a discussion present in [20]. The metric connection HA
is the underlying nonlinear connection of an infinite family of A-anisotropic connections
∇. One of them is the (Levi–Civita)–Chern connection of L, which is the horizontal part of
Chern–Rund’s and Cartan’s classical connections and has Christoffel symbols (5). All the
others are this one plus an anisotropic tensor Q ∈ T 1

2 (MA) with Q(−, C) = 0 when viewed
as an F (A)-bilinear map X(MA)×X(MA)→ X(MA). In particular, for Q = −Lan], one
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gets the Berwald anisotropic connection of L, which is the horizontal part of Berwald’s and
Hasiguchi’s classical connections and has Christoffel symbols (6). We did not as a priory
select any of these ∇’s.

In some of the previous literature [34–37], the Finslerian divergence of vector fields was
chosen to be defined directly with the Chern connection. In [18,19], the quantity trace(∇Z),
with ∇ the Chern anisotropic connection, was referred to as the divergence of Z, though
only after it had appeared in the divergence theorem. We have proven that the most natural
definition leads to this characterization, hence clarifying why using Chern’s covariant
derivative is not arbitrary. Moreover, we have seen that said derivative fulfills the natural
requisite (11) and is compatible with the lowering and raising of indices; these are key
properties when it comes to the stress–energy tensor T. Still, it is important to compare this
with what happens when one uses the other most natural covariant derivative: Berwald’s.

Remark 8 (Divergence in terms of the Berwald connection). Let ∇ be the Chern anisotropic
connection of L, with Christoffel symbols (5), and ∇̂ be the Berwald one, with symbols (6).

(i) (33) and (41) read respectively

div(Z) = ∇̂iZi + LankZk = trace(∇̂Z) + Lanm(Z),

div(T)j = ∇̂iTi
j + LankTk

j − Lank
ijT

i
k

= C1
2(∇̂T)j + Lanm(T)j − C1

1(Lan](T(−),−))j,

where Lanm is the mean Landsberg tensor (see (7)) and the contraction operators have the
obvious meanings. Moreover, for X ∈ X(MA)

trace(T(∇X)) = Ti
j∇iX j = Ti

j ∇̂iX j + Ti
j Lanj

ikXk

= trace(T(∇̂X)) + trace(Lan](T(−), X)),

which makes (11) consistent with the previous formulas.
(ii) One sees that the vanishing of Lanm (or of the mean Cartan Cm, see ((6.37) in [38]))

implies that the divergence of elements of X(MA) coincides with the trace of their Berwald
covariant derivative. However, Lanm = 0 (or even Cm = 0) is not enough if one wants to
obtain the same characterization for elements of T 1

1 (MA).

Remark 9 (Sufficient conditions for lHX g = 0 and being Finselrian Killing). In Remark 13 one
could see that X ∈ X(M) together with ∇CX = 0 is sufficient for X to be Killing. This condition
does not privilege the Chern connection ∇ against the Berwald ∇̂:

∇CX = ∇̂CX + Lan](C, X) = ∇̂CX

(see ((38) in [21]), where L[ is what here we would denote Lan]). However, when it comes to
the stress–energy tensor, we have seen that the relevant condition is not this but rather lHX g = 0.
Proposition 3 (A) implies that ∇vX = 0 is sufficient for

(
lHX g
)

v = 0, and this does privilege ∇
against ∇̂.

5.3. Finslerian Conservation Laws and Main Examples

Compare the results here with the classical case (14) and also with [19].

Corollary 1. Let L be a fixed pseudo-Finsler metric defined on A. If

(i) X ∈ X(MA) is an anisotropic vector field,
(ii) V ∈ XA(U) is an A-admissible field with U ⊆ M open,
(iii) T ∈ T 1

1 (MA) is an anisotropic 2-tensor, and
(iv) D ⊆ U is a domain with ∂D smooth up to subset of 0 (n− 1)-dimensional measure on M

and Supp(XV) ∩ D compact,
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then ∫
D

div(T)(X)dVolV +
∫

D
trace(T(∇X))VdVolV

+
∫

D

{
Cm(DT(X)V) + trace(∂̇DV T(X))

}
dVolV =

∫
∂D

ıT(X)V
(dVolV),

(44)

where Cm is the mean Cartan tensor, and DV is computed with the metric nonlinear connection (4).

Proof. Just take Z = T(X) in Theorem 2 and use part (B) or Proposition 3 .

Remark 10. Observe that (44) allows for an interpretation of the divergence of T in terms of the
flow in the boundary. Consider a sequence of domains Dm such that their volumes go to zero when
m → +∞ and consider an observer V such that is infinitesimally parallel at p ∈ M, namely,
DV = 0 in p ∈ M and X such that ∇vX = 0. Then (44) and the mean value theorem imply that

div(T)v(X) = lim
m→+∞

1
VolV(Dm)

∫
∂Dm

ıT(X)V
(dVolV).

In particular, div(T)v = 0 can be interpreted as that the observer v measures conservation of
energy in its restspace.

Corollary 2. In the ambient of the previous corollary, assume:

(i) div(T)V = 0.
(ii) Any of the conditions (Ci) or (Cii) of Proposition 3 holds for T[

V .
(iii) Cm(DT(X)V) + trace

{
∂̇DV(T(X))

}
= 0.

Then ∫
∂D

ıTV(XV)
(dVolV) = 0. (45)

Proof. It follows from Corollary 1, taking into account that the hypotheses (i), (ii), and
(iii) imply that the three first integrals in (44) vanish.

Remark 11 (Sufficient conditions for the hypotheses (i), (ii), and (iii)).

(i) Obviously, div(T) = 0 suffices, but we do not need to assume that the divergence vanishes
for all observers.

(ii) X = C suffices. In fact, ∇C = 0 (Proposition 2.9 in [17]), so (Ci) of Proposition 3 holds
for T[

V . Thus, assuming the other two hypotheses, we get∫
∂D

ıTV(V)(dVolV) = 0.

(iii) Although the hypothesis may seem artificial as it stands, there are a number of natural
situations in which it is guaranteed. First, in classical relativity (g, T, and X isotropic),
because Cm = 0 and ∂̇(T(X)) = 0; the result is then independent of V. Second, when the
observer field is parallel (DV = 0), trivially. Third, when DV = θ ⊗V for some 1-form V
and T(X) is 0-homogeneous, because of Euler’s theorem. Fourth, in the situation described
in (Section 5.1 in [19]) (Z is our T(X), s is our V, and I is our Cm).

Remark 12 (Representations of (45)). One needs to keep in mind Remark 5. For a smooth part Γ
of ∂D, one can use the (salient) Riemannian unit normal to represent∫

Γ
ıTV(XV)

(dVolV) =
∫

Γ
gV(N̂V , N̂V)gV(N̂V , TV(XV))dσV

=
∫

Γ
gV(N̂V , N̂V)T[

V(N̂V , XV)dσV

(46)
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when Γ is non-gV-lightlike, and the Finslerian unit normal to represent∫
Γ

ıTV(XV)
(dVolV) =

∫
Γ

εξ L(ξ)gξ(ξ, TV(XV))dΣξ
V

when L is Lorentz–Finsler and Γ is L-spacelike. This makes it possible to have the very same
conservation law (45) written in distinct ways, and in the examples below we will see that different
expressions are preferable in different situations.

In the remainder of the section, we analyze the Finslerian conservation laws in two
settings in which L is Lorentz–Finsler. In particular, g has signature (+,−, . . . ,−), A
determines a time orientation, L > 0 on A, and (A, L) is maximal with these properties. We
also have regularity conditions at ∂A, and in fact one sees that Theorem 2 and Corollary 2
still hold when allowing that Z, X ∈ X(MA), T ∈ T 1

1 (MA) and V ∈ XA(U). Despite this,
in both settings it will be necessary to take V as L-timelike, so the regularity at ∂A will not
be used.

5.3.1. Example: Lorentz Norms on an Affine Space

In this example, we shall particularize Corollary 2 to the easiest Finslerian setting in
which we can assure that its hypothesis (iii) holds. Namely, the structure of an affine space
automatically provides an infinite number of parallel observer fields, V ∈ XA(M) with
DV = 0.

To be preicse, suppose that M = E is an affine space equipped with a Lorentz norm
on an open conic subset A∗ ⊆ ~E \ 0 (a positive pseudo-Minkowski norm with Lorentzian
signature in (Definition 2.11 in [23])). Under the usual identifications, such a norm can
be seen as a Lorentz–Finsler L on A ⊆ TE \ 0 ≡ E×

(
~E \ 0

)
that is independent of the

first factor. Consequently, its fundamental tensor is nothing more than a Lorentzian scalar
product gv for each v ∈ A∗. The metric nonlinear connection of L coincides with the
canonical connection of E, hence so do the Chern and Berwald anisotropic connections10.
This is what implies that the parallel V ∈ XA(E) correspond exactly to the elements v ∈ A∗.

Let us introduce some notation. Given (p0, v) ∈ A with L(v) = 1, we can consider
the Lorentzian scalar product gv and the orthogonal hyperplane R := p0 + ~R := p0 +{

w ∈ ~E : gv(v, w) = 0
}

. We get an isometry (t, p) ∈ R ×R 7→ p + tv ∈ E, where R is

equipped with − gv|R (a Euclidean scalar product), R×R with dt2 + gv|R (a Lorentzian
one) and E with gv. Let Ω be a compact domain of R with ∂Ω ⊆ R smooth up to a null
(n− 2)-dimensional measure set, and let n̂v be its salient unit (− gv|R)-normal. Then,
for t0 < t1, the compact domain D ≡ [t0, t1] ×Ω ⊆ E has the required smoothness to
apply Corollary 2, its boundary is ∂D = {t1} ×Ω ∪ [t0, t1]× ∂Ω ∪ {t0} ×Ω, and its salient
gv-normal is given by

N̂v

∣∣∣
{t1}×Ω

= v, N̂v

∣∣∣
]t0,t1[×∂Ω

= n̂v, N̂v

∣∣∣
{t0}×Ω

= −v;

gv(−v,−v) = gv(v, v) = L(v) = 1,

gv(n̂v, n̂v) = −(− gv|R)(n̂v, n̂v) = −1.

Remark 13. For a V ∈ XA(E) identifiable with v ∈ A∗, we know that the hypothesis (iii) of
Corollary 2 holds automatically. If (i) and (ii) hold too, then we get (45), for which we can use the
representation (46). However, given the nature of the metric “nonlinear” and Chern “anisotropic”
connections, it is easy to convince oneself that evaluating the result of anisotropic computations on
this V is the same as first evaluating on V and then computing with isotropic tensors. For instance
div(T)V = div(TV) and

(
lHX g
)

V = LXV (gV). As a consequence, mathematically we get exactly
the same conservation laws as if we just were in the Lorentzian affine space (E, gv). Physically,
though, different observers will measure different momenta.
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Corollary 3. Let V ∈ XA(E) parallely identifiable with an v ∈ A∗. If T ∈ T 1
1 (EA) is such that

div(TV) = 0 and X ∈ X(EA) is such that T[
V(−,∇V

−X) is antisymmetric, or T[
V is symmetric

and LXV (gV) = 0, then

0 =
∫
{t1}×Ω

T[
V(V, XV)dσV −

∫
{t0}×Ω

T[
V(V, XV)dσV

−
∫
]t0,t1[×∂Ω

T[
V(n̂V , XV)dσV ,

(47)

where dσV is identifiable with the volume form of − gv|Ω on
{

tµ

}
×Ω and coincides with the

volume form of gv|]t0,t1[×∂Ω on ]t0, t1[× ∂Ω.

Physically, even though Lorentz norms generalize Very Special Relativity [7], the
classical interpretations of Special Relativity are still valid; we list them for completeness:
v is an instantaneous observer at an event p0, ~R is its restspace and R is the simultaneity
hyperplane of v, namely, the “universe at an instant, say t = 0, as seen by v.” The affine
space structure allows for a canonical propagation of v to all of the spacetime. Hence, if
Ω is a space region at t = 0, then D is the “evolution of Ω along the time interval [t0, t1]
as witnessed by v.” (47) expresses that the variation after some time of the total amount of
Xv-momentum in Ω is exactly equal to the amount of it that flowed across ∂Ω.

5.3.2. Example: Cauchy Hypersurfaces in a Finsler Spacetime

Here we present a construction which manifestly generalizes that of the previous
example, again with straightforward physical interpretations, and we find an estimate that
allows us to interpret (47) when ∂Ω is “at infinity”. We will take V ∈ XA(U) with U ⊆ M
open, and we recall that we will assume the hypotheses of Corollary 2.

Suppose that the Finsler spacetime (M, L) is globally hyperbolic. By this, we mean that
there is some (smooth, for simplicity) L-Cauchy hypersurface S ⊆ M: every inextensible
L-timelike curve γ : I → M (thus γ̇(t) ∈ A) meets S exactly once. Let us assume that there
are two L-spacelike Cauchy hypersurfaces S0, S1 ⊆ U which do not intersect11. Then
the results of [39] can be automatically transplanted: there exists a foliation by spacelike
Cauchy hypersurfaces M ≡ R×S such that S0 ≡ {t0} ×S and S1 ≡ {t1} ×S . Taking
the Finslerian unit normal ξ to each level {t} ×S produces an L-timelike field ξ ∈ XA(M).
We can take this ξ to be our V, but we will not do so for the most part of this example.

Suppose also that
{

Ω0,m
}

is an exhaustion by compact domains of S0, namely Ω0,m ⊆
Ω0,m+1 and

⋃
m∈N

Ω0,m = S0, such that ∂Ω0,m ⊆ S0 is smooth a. e. For p ∈ S0, let γp be the

integral curve of V starting at p, which necessarily meets S1 at a unique instant tp ∈ R. Put

Ω1,m :=
⋃

p∈Ω0,m

γp(
{

tp
}
) ⊆ S1, Γp := γp

[
min

{
0, tp

}
, max

{
0, tp

}]
,

Dm :=
⋃

p∈Ω0,m

Γp ⊆ U, Γm :=
⋃

p∈∂Ω0,m

Γp.

Remark 14. By construction,

(i)
{

Ω1,m
}

is again an exhaustion by compact domains of S1 such that ∂Ω1,m =⋃
p∈∂Ω0,m

γp(
{

tp
}
) ⊆ S1 is smooth a. e.

(ii) Dm is a compact domain of U with ∂Dm = Ω1,m ∪ Γm ∪Ω0,m ⊆ U smooth a. e. We
do not really need to consider the union of all the Dm’s.
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Next, for Z ∈ X(MA), we shall give the quantitative decay condition on (some
components of) ZV so that the integral∫

Γm
ıZV (dVolV)

vanishes in the limit. The key fact for it will be that V is everywhere tangent to Γm (this is
composed of γp’s). In particular, as V is gV-timelike, so must be Γm.

Remark 15. The presence of V allows us to define an auxiliar Riemannian metric hV on U with
norm ‖−‖V , which gives a very natural way of quantifying. Namely, if

{
e0 = Vp/F(Vp), e1, . . . , en

}
is an orthonormal basis for gVp , then we prescribe it to be also hVp -orthonormal; equivalently,

hVp(u, w) = 2gVp(u,
Vp

F(Vp)
)gVp(w,

Vp

F(Vp)
)− gVp(u, w).

Then, by construction:

(i) The volume form of hV coincides with that of gV , namely dVolV .
(ii) The salient unit hV-normal to Γm coincides with the corresponding gV-normal. We denote

it by N̂V , as in Remark 12.
(iii) The hypersurface volume form of Γm with respect to hV coincides with the one computed

with gV , namely dσV = i∗m(ıN̂V
(dVolV)) with im : Γm ↪→ U the inclusion. Hence we

speak just of the hypersurface volume of Γm, namely σV(Γm). As N̂V is gV-orthogonal
to V, and hence gV-spacelike, we can use the representation∫

Γm
ıZV (dVolV) =

∫
Γm

gV(N̂V , N̂V)gV(N̂V , ZV)dσV

= −
∫

Γm
gV(N̂V , ZV)dσV .

(48)

Thanks to (48) and the fact that gV(N̂V , V) = 0, we intuitively see that if ZV is
proportional to V at infinity and the hypersurface volume does not grow too much, then
the integral will be negligible. To be precise, we require that

KmσV(Γm) −→ 0 (m −→ ∞), (49)

where

Km : = max
Γm

∥∥∥∥ZV − gV(ZV ,
V

F(V)
)

V
F(V)

∥∥∥∥
V

= max
Γm

{√
gV(ZV ,

V
F(V)

)2 − gV(ZV , ZV)

}
.

Corollary 4. In the above set-up, let T ∈ T 1
1 (MA), X ∈ X(MA), and V ∈ XA(U) be such that

the hypotheses of Corollary 2 hold on all the Dm’s, and put Z := T(X). If the decay condition (49)
holds too, then ∫

Ω1,m

ıZV (dVolV) +
∫

Ω0,m

ıZV (dVolV) −→ 0 (m −→ ∞), (50)

where Ω1,m is constructed from Ω0,m by intersecting the integral curves of V with S1.
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Proof. Corollary 2 can be applied on Dm, as Supp(ZV) ∩ Dm is always compact. This and
the representation (48) give

0 =
∫

Ω1,m

ıZV (dVolV) +
∫

Ω0,m

ıZV (dVolV)−
∫

Γm
gV(N̂V , ZV)dσV . (51)

Using the definition of hV (Remark 15) and the Cauchy–Schwarz inequality,

0 ≤
∣∣∣∣∫Γm
−gV(N̂V , ZV)dσV

∣∣∣∣
≤
∫

Γm

∣∣∣gV(N̂V , ZV)
∣∣∣dσV

=
∫

Γm

∣∣∣∣gV(N̂V , ZV − gV(ZV ,
V

F(V)
)

V
F(V)

)

∣∣∣∣dσV

=
∫

Γm

∣∣∣∣−hV(N̂V , ZV − gV(ZV ,
V

F(V)
)

V
F(V)

)

∣∣∣∣dσV

≤
∫

Γm

∥∥∥N̂V

∥∥∥
V

∥∥∥∥ZV − gV(ZV ,
V

F(V)
)

V
F(V)

∥∥∥∥
V

dσV

=
∫

Γm

∥∥∥∥ZV − gV(ZV ,
V

F(V)
)

V
F(V)

∥∥∥∥
V

dσV

≤
∫

Γm
KmdσV

= KmσV(Γm),

so if KmσV(Γm) tends to 0, then so does the integral along Γm in (51).

Remark 16. In Corollary 4, if one of the integrals of ıZV (dVolV) along S0 or S1 exists in the
Lebesgue sense, then so does the other and (50) reads∫

S1

ıZV (dVolV) +
∫
S0

ıZV (dVolV) = 0.

Note that they could be ±∞, as we have not assumed, for instance, that ZV is compactly
supported in the union of all the Dm’s. Rather, we have assumed the decay condition (49) alone.

Remark 17 (Sufficient conditions for (49)). As for ensuring the decay condition, there are two
possible scenarios.

(i) The hypersurface volume σV(Γm) stays bounded. Then, it is enough for (49) that Km → 0,
and one could instead postulate the stronger condition that the maximum outside Dm tends
to 0, which is independent of the concrete compact exhaustion.

(ii) σV(Γm) grows without bound. In this case, one can just postulate that the decay of Km
compensates the growth of σV(Γm), but this does depend on the compact exhaustion.

Notice that this is a purely Finslerian difficulty. Indeed, suppose that g, T, and X were
isotropic and that Z = T(X) was timelike. Then one could just set V := Z and then carry out all
the construction. Corollary 2 would be independent of the observer field (and its hypothesis (iii)
would hold trivially), and Km = 0 regardless of Γm. This is how we get the following statement of
the classical law.

Corollary 5. In the above se-up, suppose that L comes from a Lorentzian metric on M. Let
T ∈ T 1

1 (M) and X ∈ X(M) be such that div(T) = 0 and T[(−,∇−X) is antisymmetric, or T[

is symmetric and LX g = 0. If Z := T(X) is timelike, then∫
Ω1,m

ıZV (dVolV) +
∫

Ω0,m

ıZV (dVolV) −→ 0 (m −→ ∞),
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where Ω1,m is constructed from Ω0,m by intersecting the integral curves of Z with S1.

Remark 18 (Conservation in terms of the Finslerian unit normal).

(i) One could try to represent also the integrals of (50) in terms of dσV , as in Section 5.3.1.
However, according to Remark 12, that would require assuming that Sµ is non-gV-lightlike,
which is not very reasonable when all we know is that Sµ L-spacelike and L-Cauchy.

(ii) On the other hand, in terms of the Finslerian unit normal ξ, (50) reads∫
Ω1,m

gξ(ξ, TV(XV))dΣξ
V −

∫
Ω0,m

gξ(ξ, TV(XV))dΣξ
V −→ 0 (52)

when m→ ∞. The sign in front of the second integral is explained as follows (see Remark 5
(ii)). dΣξ

V selects an orientation on each Ωµ,m: the one for which dVolV(ξ,−, . . . ,−) is
positive. However, in (50) Ω1,m already had an orientation O1 and Ω0,m had O0: the
Dm-salient ones. Necessarily12, exactly one of these agrees with the dΣξ

V-orientation: O1 if
S1 lays in the future of S0 and O0 if it is the opposite. Notice that this, and hence (52),
would fail if the Cauchy hypersurfaces crossed.

(iii) In the case V = ξ, (52) becomes∫
Ω1,m

T[
ξ (ξ, Xξ)dΣξ −

∫
Ω0,m

T[
ξ (ξ, Xξ)dΣξ −→ 0,

a conservation law in which all the terms are purely Finslerian.

Summing up, in this example we have proven a Finslerian (observer-dependent)
version of the classical law that the total amount of X-momentum in the universe is con-
served (Corollary 4). Our formulation is asymptotic, so it is valid even for infinite total
XV-momentum (Remark 16). We have recovered the classical law (Corollary 5), which
always holds under hypotheses on T and X alone, while in the general Finslerian case
nontrivial difficulties appear in the regime of big separation between the Cauchy hypersur-
faces (high σ(Γm), Remark 17). Finally, we have expressed the law naturally in terms of the
Finslerian unit normal (see (52)).

6. Conclusions

About the physical interpretation of T, Section 3:

1. Heuristic interpretations from fluids, Sections 3.1 and 3.2—Possible breakings of Lorentz-
invariance lead to non-trivial transformations of coordinates between observers. Such
transformations are still linear and permit a well-defined energy-momentum vector
at each tangent space Tp M, Section 3.1.
However, the stress–energy–momentum T must not be regarded as a tensor on each
Tp M but as an anisotropic tensor. This depends intrinsically on each observer u ∈ Σ
and may vary with u in a nonlinear way. Indeed, the breaking of Lorentz invariance
does not permit to fully replicate the relativistic arguments leading to (isotropic)
tensors on M, even though classical interpretations of the anisotropic T in terms of
fluxes can be maintained, Section 3.2.

2. Lagrangian viewpoint, Section 3.3. In principle, the interpretations of Special Relativity
about the canonical energy–momentum tensor associated with the invariance by
translations remain for Lorentz norms and, thus, in Very Special Relativity. In the case
of Lorentz–Finsler metrics, some issues to be studied further appear:

(a) The canonical stress–energy tensor in Relativity δSmatter/δgµν leads to differ-
ent types of (anisotropic) tensors in the Finslerian setting (a scalar function
δSmatter/δL on A ⊆ TM in the Einstein-Hilbert setting, higher order tensors
in Palatini’s). Starting at such tensors, different alternatives to recover the
heuristic physical interpretations in terms of a 2-tensor appear.
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(b) In the particularly interesting case of a kinetic gas [1,16], the 1-PDF φ becomes
naturally the matter source for the Euler-Lagrange equation of the Finslerian
Einstein-Hilbert functional. However, the variational derivation of φ is ob-
tained by means of a possibly non-natural Lagrangian. This might be analyzed
by sharpening the framework of variational completion for Finslerian Einstein
equations [15].

About the divergence theorem for anisotropic vector fields Z, Section 4:

1. Section 4.1: For any Lorentz–Finsler metric L, there is a natural definition of anisotropic
Lie bracket derivation along Z, which depends only on the nonlinear connection HA
and admits an interpretation by using flows.

2. Section 4.2: This bracket allows one to give a natural definition of div(Z) which
depends exclusively on HA and the volume form of L. This provides a geometric
interpretation for the definition of divergence introduced by Rund [18].

3. A general divergence theorem is obtained (Theorem 2) so that Section 4.3:

(a) It can be seen as a conservation law for Z measured by each observer field V,
even if the conserved quantity depends on V.

(b) The computation of the boundary term is intrinsically expressed in terms
of forms. However, several metric elements can be used to re-express it, in
particular the normal vector field for: (i) the pseudo-Riemannian metric gV
(Rund), or (ii) the pseudo-Finsler metric L, when L is defined on the whole
TM (Minguzzi).

About the conservation of the stress–energy T Section 5:

1. Sections 5.1 and 5.2: The computation of div(T) priviledges the Levi-Civita–Chern
anisotropic connection, showing explicit equivalence with Rund’s approach.

2. Corollarys 1 and 2: a vector field T(X)V on M is preserved assuming that some
natural elements vanish on V for T, X and DV.

3. Section 5.3: Natural laws of conservation on Cauchy hypersurfaces under general
conditions (including rates of decay for unbounded domains) can be obtained by a
combination of the techniques (i) and (ii) in the item 3b above.
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Appendix A. Kinematics: Observers and Relative Velocities

Here, we discusss a series of different possibilities for the notion of relative velocity
between two observers, each one with a well-defined geometric construction. This is
done as an academic exercise, because we do not discuss experimental issues (compare
with [40,41]). However, it is worth emphasizing that all the possibilities studied here are
intrinsic to the geometry of a flat model and, thus to any Finsler spacetime.

Start at an affine space endowed with a Lorentz norm let u, u′ ∈ Σ be two distinct
observers and consider the plane Π := Span{u, u′} ⊂ V, which intersects transversally
C and inherits a Lorentz–Finsler norm with indicatrix ΣΠ := Π ∩ Σ. Recall that both
tangent spaces TuΠ and Tu′Π inherit naturally a Lorentz scalar product by restricting the
fundamental tensors gu and gu′ , resp. Moreover, their (1-dimensional) restspaces l := TuΣΠ,
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l′ := Tu′ΣΠ also inherit a positive definite metric. In what follows, only the geometry of Π
will be relevant.

Appendix A.1. The Lorentz Metric gΠ up to a Constant

Notice that Π∩Cp is composed by two half-lines spanned by two C-lightlike directions
w±; we will consider the orientation Π provided by the choice (w+, w−). One can determine
a scalar product gΠ in Π (which is unique up to a positive constant), regarding both w+

and w− as gΠ-lightlike in the same causal cone. It is easy to check that Σ must be a strongly
convex curve which converges asymptotically to the vector lines spanned by w±. This
implies both u ∈ Σ will be timelike for gΠ and its restpace l will be gΠ-spacelike; we can
assume also that the orientation l+ in l is induced by the chosen w+.

Notice that gu(u, w±) ≥ 0 by the fundamental inequality, but w± might be timelike or
spacelike for gu (although gu(u, w±)→ 0 as u→ w±). This possibility might be regarded
as a possible measurement of the speed of light with respect to u by the observers in Π,
namely, this velocity is in the orientation l+ when w+ is gu-spacelike and smaller than
1 when it is timelike. However, a priori it is not clear an operational way to carry out
such a measurement. Moreover such a measurement might be regarded as something
non-intrinsic to the speed of light but to the way of measuring it.

Nevertheless, as pointed out in (Section 6 in [6]), there are several effects which might
lead to a measurement of different speeds of light in different directions. So, we will
consider that each Π has its own speeds of light c±Π in each spacelike orientation l±. Indeed,
given u and an orientation l+, the speed of light c+Π will be defined as the the supremum
of the relative velocities between u and all the observers u′ such that u′ − u yields the
orientation l+. Next, we will explain several possible meanings of these velocities. To avoid
cluttering, next we will write cΠ, assuming that the appropriate choice in c±Π is done for
each u′.

Appendix A.2. Simple Relative Velocity

As gu determines naturally a Lorentz metric on V, we can define the simple relative
velocity vs

u(u′) of u′ measured by u as the usual gu-relativistic velocity between u, u′

normalized to cΠ, i.e.,

vs
u(u
′) = cΠ tanh(θ) where cosh θ = −gu(u, u′) > 1,

(the latter by the reversed fundamental inequality). Clearly, vs
u′(u) 6= vs

u(u′) in general, but
this does not seem a drawback in the Finslerian setting.

A support for the physical plausibility of this velocity is that one could expect that each
observer u will work as in Special Relativity just choosing an orthonormal frame of gu. The
possibility gu(v, v) 6= 1 might seem ackward from a dynamical viewpoint (see below), but it
seems harmless as far as only kinematics is being considered. In principle, the comparison
between the measurements of the two observers would be geometrically possible by using
the unique isometry of (TuΠ, gu) to (Tu′Π, gu′) which maps u into u′ and is consistent with
orientations induced from Π. What is more, this isometry can also be extended to a natural
isometry from (TuV, gu) to (Tu′V, gu′), namely, regard (Sectionigma, g) as a Riemannian
metric and use the parallel transport from u to u′ along the segment of the curve Π ∩ Σ
from u to u′. However, the following fact might suggest to explore further possibilities.

Remark A1. Assume that Σ is modified into the indicatrix Σ̄ of another Lorentz–Finsler norm so
that (i) Σ̄ = Σ around u and (ii) u′ ∈ Σ̄ but its Σ̄ restspace l̄′ is different from l′. Then, the simple
velocity would remain unaltered, i.e., v̄s

u(u′) = vs
u(u′).
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Appendix A.3. Velocity as a Distance between Observers

Notice that Σ can be regarded as a Riemannian manifold with the restriction of the
fundamental tensor g and, then, Σ ∩Π can be regarded as a curve whose length can be
computed. Then, the observers’ distance velocity is defined as:

vd(u, u′) = cΠ tanh
(

lengthg{segment of Σ ∩Π from u to u′}
)

.

Notice that this velocity is symmetric and it generalizes directly the one in Special
Relativity providing a geometric interpretation for the addition of velocities. Recall that
vd(u, u′) has been defined essentially as a distance in Σ ∩Π, where Π depends of each pair
of observers, thus, one might have vd(u, u′) + vd(u′, u′′) < vd(u, u′′) when n > 2. If one
prefers to avoid such a possibility, it is enough to consider g-distance in the whole space
of observers Σ (observers’ space distance velocity), at least in the case that cΠ is regarded as
independent of Π.

Remark A2. In the case studied in Remark A1, one would have v̄d(u, u′) 6= vd(u, u′) in general.
However, the relative position of the restspaces l and l′ does not play any special role.

Appendix A.4. Length-Contraction and Velocity

Consider a segment S of l with gu-length ` and the strip of V obtained by translating
S in the direction of u. Let S′ be the intersection of this strip with l′, which will be a new
segment of gu′ -length `′. Let λ = `′/` be the length-contraction parameter. In the relativistic
case, λ < 1 and λ→ 0 as u′ → CΠ. The former property does not hold for a general Lorentz
norm but the latter does. So, whenever λ < 1 holds, we can define the length-contractive
velocity vc

u(u′) of u′ with respect to u as:

vc
u(u
′) = cΠ

√
1− λ2.

Again, this velocity is not symmetric. Because of the strong convexity of Σ, a different
observer u′ will have a different restspace l′, but this does not imply a different length `′

nor velocity vc
u(u′). However, this velocity gives a comparison between restspaces which

was absent in the previous two velocities.

Appendix A.5. Symmetric Lorentz Velocities in Π

Let us consider the Lorentzian scalar product gΠ en Π, uncfique up to a positive
constant (which will be irrelevant for our purposes) introduced above. Recall that u and u′

were timelike for gΠ and, moreover, both l and l′ were spacelike. Now, we can define two
velocities between u and u′: the simple Lorentz velocity,

vs(u, u′) = cΠ tanh(θ) where cosh θ = − gΠ(u, u′)√
gΠ(u, u)gΠ(u′, u′)

,

and the length-contractive Lorentz velocity,

vc(u, u′) = cΠ tanh(θ) where cosh θ = − |gΠ(n, n′)|√
gΠ(n, n)gΠ(n′, n′)

,

where, in the latter, n, n′ are gΠ-timelike vectors orthogonal to l, l′, resp.
Clearly, both velocities are symmetric. Their appearance might be physically sound

because the intrinsic Lorentz metric gΠ (up to a constant) can be regarded as an object
available (or, at least, a compromise one) for all the observers, as it would depend directly
on physical light rays.
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Notes
1 Berwald spaces [12,13] are an exception, as the parallel transport becomes an isometry between the Lorentz norms. Thus, in

some sense, these spaces would admit a principle of equivalence with respect to a Lorentz-normed space (non-necessarily
Lorentz–Minkowski).

2 In this section, i, j = 1, 2, 3 and µ, ν = 0, 1, 2, 3, but in the others they will run freely from 1 to n (= dim M).
3 The symmetry of T is dropped for the case of theories with high spin because of its contribution to angular momentum.
4 See for example (Section 4.5 in [24], Section 35 in [25]).
5 See for example [26] (around formula (E.1.36)) or (Section 32 in [25]).
6 See for example, (Section E.1 in [26]), (Section 4.3 in [27]), (Sections 21.2 and 21.3 in [28]).
7 Some arguments which support strongly their choice are (see [1]): (a) the simplest analogous to the vacuum Einstein equation in

the Finslerian approach Ricci= 0 (proposed by Rund [18], and satisfied by Finsler pp-waves [9]) is not a variational equation;
(b) the Ricci scalar functional yields an Euler–Lagrange equation, which agrees with Einstein’s in the vacuum Lorentz case, and
(c) this Euler–Lagrange equation is the variational completion of the Finslerian Ricci= 0.

8 This is not to be mistaken by the torsion of the nonlinear connection HA, which would have coordinates Ni
j ·k − Ni

k ·j (even though
this can be seen as a particular case of the torsion of some ∇ and hence it is also denoted by Tor in [17]).

9 Here, C1,3 is the operator that (metrically) contracts the first index of S with the one introduced by ∇, and C1
1 is the operator that

(naturally) contracts the first index of R with the one introduced by ∇.
10 For instance, it is clear that in affine coordinates the components of the metric spray vanish, so the geodesics are the straight

lines of E.
11 The case when they interesect can be also conisdered by taking into account that, then, the open set M \ J+(S1 ∪ S2) is still

globally hyperbolic and a Cauchy hypersurface S3 of this open subset will be also Cauchy for M (and it will not intersect any of
the previous ones).

12 Suppose, for instance, that S1 lays in the future of S0: the γp’s departing from Ω0,m reach points γp(tp) ∈ Ω1,m with tp > 0.
Take bases (e1, . . . , en−1) for TpΩ0,m and (e′1, . . . , e′n−1) for Tγp(tp)Ω1,m such that (Vp, e1, . . . , en−1) and (Vγp(tp), e′1, . . . , e′n−1) are

dVol-positive. Then (e1, . . . , en−1) and (e′1, . . . , e′n−1) are both dΣξ
V -positive (ξ and V always lie in the same half-space), the former

is O0-negative (V is Dm-entering at S0) and the latter is O1-positive (V is Dm-salient at S1).
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