Mostrar el registro sencillo del ítem

dc.contributor.authorÁlvarez Verdejo, Encarnación 
dc.contributor.authorMoya Fernández, Pablo José 
dc.contributor.authorMuñoz Rosas, Juan Francisco 
dc.date.accessioned2022-02-03T11:45:05Z
dc.date.available2022-02-03T11:45:05Z
dc.date.issued2021-12-15
dc.identifier.citationÁlvarez-Verdejo, E.; Moya-Fernández, P.J.; Muñoz-Rosas, J.F Single Imputation Methods and Confidence Intervals for the Gini Index. Mathematics 2021, 9, 3252. [https://doi.org/10.3390/math9243252]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/72640
dc.descriptionThis research has been partially supported by the Ministry of Economy, Industry and Competitiveness, the Spanish State Research Agency (SRA) and European Regional Development Fund (ERDF) (project reference ECO2017-86822-R). This research has been partially supported by the Ministry of Economy, Industry and Competitiveness, the Spanish State Research Agency (SRA) and European Regional Development Fund (ERDF) (project reference ECO2017-84138-P).es_ES
dc.description.abstractThe problem of missing data is a common feature in any study, and a single imputation method is often applied to deal with this problem. The first contribution of this paper is to analyse the empirical performance of some traditional single imputation methods when they are applied to the estimation of the Gini index, a popular measure of inequality used in many studies. Various methods for constructing confidence intervals for the Gini index are also empirically evaluated. We consider several empirical measures to analyse the performance of estimators and confidence intervals, allowing us to quantify the magnitude of the non-response bias problem. We find extremely large biases under certain non-response mechanisms, and this problem gets noticeably worse as the proportion of missing data increases. For a large correlation coefficient between the target and auxiliary variables, the regression imputation method may notably mitigate this bias problem, yielding appropriate mean square errors. We also find that confidence intervals have poor coverage rates when the probability of data being missing is not uniform, and that the regression imputation method substantially improves the handling of this problem as the correlation coefficient increases.es_ES
dc.description.sponsorshipMinistry of Economy, Industry and Competitiveness Spanish State Research Agency (SRA)es_ES
dc.description.sponsorshipEuropean Commission ECO2017-84138-Pes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectMissing dataes_ES
dc.subjectVariance estimationes_ES
dc.subjectCoveragees_ES
dc.subjectInequalityes_ES
dc.subjectNon-response mechanismes_ES
dc.titleSingle Imputation Methods and Confidence Intervals for the Gini Indexes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/math9243252
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España