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Abstract: The problem of missing data is a common feature in any study, and a single imputation
method is often applied to deal with this problem. The first contribution of this paper is to analyse
the empirical performance of some traditional single imputation methods when they are applied
to the estimation of the Gini index, a popular measure of inequality used in many studies. Various
methods for constructing confidence intervals for the Gini index are also empirically evaluated.
We consider several empirical measures to analyse the performance of estimators and confidence
intervals, allowing us to quantify the magnitude of the non-response bias problem. We find extremely
large biases under certain non-response mechanisms, and this problem gets noticeably worse as
the proportion of missing data increases. For a large correlation coefficient between the target
and auxiliary variables, the regression imputation method may notably mitigate this bias problem,
yielding appropriate mean square errors. We also find that confidence intervals have poor coverage
rates when the probability of data being missing is not uniform, and that the regression imputation
method substantially improves the handling of this problem as the correlation coefficient increases.

Keywords: missing data; variance estimation; coverage; inequality; non-response mechanism

1. Introduction

Most surveys suffer from the problem of missing data, and this issue may have an
important impact on results and conclusions. Missing data may appear for many reasons,
and cases of both unit and item non-response can be observed. Unit non-response indicates
that data for certain units are missing, i.e., there is no information at all for such units.
On the other hand, item non-response arises when only some variables of the study have
missing values. Note that it is quite common for individuals to choose not to answer
sensitive questions, such as those related to income, wealth, drugs use, etc. This distinction
between unit and item non-response is important when it comes to handling the problem
of missing data. Thus, weighting adjustment procedures ([1]) are commonly used in the
presence of unit non-response, whereas imputation methods ([2]) are usually considered
for item non-response.

The consequences of missing data may be serious. Non-response bias is possibly
the most critical issue; it is the bias of a given estimate that appears when respondents
and non-respondents have, in general, different values for the target variables. A second
common consequence is the fact that the variance of estimators may increase, which implies,
for example, that the precision of the study decreases, and confidence intervals will be
wider. Variance estimates may also have a bias, and this issue has an impact on confidence
intervals, hypothesis testing, etc. Finally, missing data may mean obtaining smaller sample
sizes, with valuable information potentially being removed from the study.

Rubin [3] proposed the classification MCAR, MAR and MNAR for surveys with
missing data. According to Rubin’s theory, non-response is viewed as a random process
where each unit has a certain probability of being missing. This process is termed a non-
response mechanism, and is unknown in real applications. MCAR (Missing Completely
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At Random) applies when the probability of being missing is constant for all units, and
does not depend on either the observed or missing data. The non-response bias is not a
problem when the MCAR assumption holds, since the missing data can be considered
as a random sample taken from the original sample. The use of imputation classes is
a common practice when dealing with missing data (see [4]). Imputation classes are
homogeneous groups of respondents created with the aim of minimizing the bias. Note
that the MCAR assumption is often unrealistic, although it is quite common to assume
MCAR inside imputation classes. A MAR (Missing At Random) mechanism arises when
the probability of missing data depends only on the observed data. The MAR assumption
is more common than the MCAR assumption, and the non-response bias is usually small
under a MAR mechanism. Finally, the MNAR (Missing Not At Random) mechanism
applies otherwise, i.e., when neither the MCAR nor the MAR assumption holds. For the
MNAR assumption, the probability of missing data depends on both observed and missing
data, and the non-response bias is a serious issue under this non-response mechanism.
Additional information on non-response mechanisms can be found in [5].

Many statistical and machine-learning techniques can be used in the presence of
missing data. The simplest solution is to do nothing, i.e., remove the units containing
missing values from the study and analyse only units without any missing data. This
method is commonly referred to as Complete Case Analysis (CCA) or Listwise Deletion,
and it has some desirable properties, such as the fact that it provides unbiased estimators
under an MCAR mechanism. However, this assumption is not very common, as has
been previously discussed. Note that CCA suffers from some serious disadvantages. For
instance, it is obvious that the sample size may decrease considerably, and the main effect
is that the efficiency of estimators decreases under the various non-response mechanisms,
including MCAR. In addition, valuable information is removed, and there is a high
probability of non-response bias.

Weighting adjustment procedures can also be used when dealing with missing data.
The idea of weighting is similar to the survey sampling theory ([6]), i.e., parameter estimates
are obtained using a set of weights that are calculated to compensate for non-response.
While it may reduce the non-response bias, there is no simple application of this method to
item non-response. In addition, weighting adjustment may produce unstable estimators
when large weights are obtained.

Finally, the use of a single imputation method is a common solution to the problem of
missing data. Single imputation consists of replacing each missing value with a plausible
value in order to obtain accurate parameter estimates. In general, imputation is used for
item non-response and has the advantage of ensuring all observed data are used. Imputa-
tion also suffers from some disadvantages, such as the fact that this method may modify the
relationship between variables. The variance of estimators may also be underestimated, but
this problem can be solved by using multiple imputation (see [7,8]). Multiple imputation
consists of replacing each missing value with M plausible values, where M > 1, and M
different datasets are thus obtained. Each completed dataset is then analysed using the
statistical analysis of interest, and the M results are combined using Rubin’s rules (see [5]).

Measuring inequality lies within the scope of numerous fields. For instance, refs. [9–11]
analyse inequality in health, environmental and educational studies, respectively. However,
this topic has a special relevance in economic studies, where income inequality has been
extensively investigated (see, for example, refs. [12,13]). The most popular statistic used to
measure inequality is the Gini index. This indicator was originally proposed by [14], since
when it has attracted a great deal of attention. For instance, additional formulations of
the Gini index have been suggested by [15,16], among others. The use of a bias correction
technique for the Gini index is discussed by [17,18]. Variance estimation of the Gini index
has been investigated, for example, by [19,20]. An exhaustive review of the problem of
estimating the variance in the Gini index estimation can be seen in [21]. Some confidence
intervals for the Gini index have been proposed by [22–24]. An excellent review of the Gini
index can be found in [25]. It is important to note that the Gini index and related mea-
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sures have also been adopted in other contexts, such as for the construction of topological
indices for trees and graphs (see [26,27]), for the analysis of reliability systems ([28]) and
for constructing decision-making methods ([29]). A key advantage of the Gini index is its
ease of interpretation, as it takes values between 0 and 1, where 0 indicates perfect equality
and 1 the opposite. In addition, this simplicity facilitates cross-country comparisons, since
the Gini index does not depend on the size of the population. Furthermore, obtaining
Gini index estimates is very straightforward as, they are regularly reported by countries
and international organizations such as the Word Bank and Eurostat. A limitation of the
Gini index is that it is less sensitive to changes at the top and the bottom of the income
distribution than it is to changes in the middle of the income distribution (see [30]). Some
recent references that use the Gini index to measure income inequality are [31–33]. The
quintile share ratio (see [34,35]) is another indicator commonly used to measure inequality.
For instance, income inequality in European Union member states is described using the
Gini Index and the quintile share ratio.

The main limitation of the quintile share ratio is the fact that it ignores inequality
in the middle of the income distribution, but it provides a good measure of the income
inequality between the top and the bottom of the income distribution. Note that other
decile ratios for measuring income inequality can also be found in the literature, but the
quintile share ratio is usually preferred over other decile ratios because it is less sensitive
to extreme values.

The first contribution of this paper is to analyse the empirical performance (in terms of
bias and efficiency) of some traditional single imputation methods when they are applied
to the estimation of the Gini index. Note that the empirical bias and the empirical efficiency
are measured, respectively, in terms of Relative Bias (RB) and Relative Root Mean Square
Error (RRMSE). The RB is of special relevance, since this measure tells us the magnitude of
the non-response bias. First, we empirically quantify the biases of the usual estimator of the
Gini index for the various non-response mechanisms, which allows us to easily compare
the impact of the non-response mechanism on the bias of this estimator of the Gini index.
Similarly, we investigate the loss of empirical efficiency of the customary estimator of the
Gini index for the various non-response mechanisms, and the results can be compared with
the RRMSE value of this estimator of the Gini index based on the original sample without
missing data. Second, we analyse the evolution of both the RB and RRMSE values when
the proportion of missing data increases, which allows us to identify the situations where
the loss of efficiency is non-negligible in comparison to results from the original sample
without missing data. It is worth noting that most surveys contain auxiliary variables
related to the variable of interest, and they can be used at the estimation stage to improve
the estimation of a given statistic. Single imputation methods can also be based on auxiliary
variables, and this approach may improve the estimation of the Gini index. Third, we
also analyse the evolution of both the RB and RRMSE values when the linear correlation
coefficient between the target and auxiliary variables increases. Finally, the bias and the
efficiency of the various procedures are investigated for small and large Gini coefficients.

The second contribution is to analyse the empirical performance, in terms of empirical
coverage rate (CR) and empirical width (W), of the aforementioned basic single imputation
methods when they are applied to the construction of confidence intervals for the Gini
index. In this case, the same scenarios are investigated, i.e., we evaluate confidence intervals
for different non-response mechanisms, proportions of missing data, correlation coefficients
and Gini coefficients. For both these contributions, results are obtained using Monte Carlo
simulation studies with a total of 48 different scenarios.

We use single imputation methods for various reasons. For instance, single imputation
is more frequently used than multiple imputation in National Statistical Institutes, besides
the fact that single imputation is simpler and less computationally intensive than multiple
imputation. In addition, as discussed in [36], a small value of M may provide a poor
estimation of the between imputation variance, and it may have an important effect on the
precision of the variance estimator obtained from the multiple imputation. Finally, there is
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no simple application of multiple imputation to some issues related to survey sampling,
such as clustering, stratification or weighting to compensate for the selection of units
with unequal probabilities. Obviously, multiple imputation has various advantages over
single imputation. For example, multiple imputation takes into account the uncertainty
in the imputation process and may considerably improve the estimation of the variance
of estimators. For this reason, as discussed in Section 5, the analysis of the empirical
performance of multiple imputation methods when they are applied to the estimation of
the Gini index, and the comparison with results derived from single imputation methods,
are suggested as avenues for further research in the near future.

Ref. [37] analyses the impact of missing data on the estimation of a measure of in-
equality that is similar to the Gini index and is commonly used to study health variables.
Ref. [37] conducts a simulation study to compare CCA and a multiple imputation proce-
dure. Only four scenarios were investigated, all of which involve the MAR non-response
mechanism. In addition, this study analyses the bias, but not the efficiency or the impact
on confidence intervals. Assuming a single case study based on a Health and Nutrition
Survey, ref. [38] compares estimates of the Gini index based on the CCA approach and a
multiple imputation method. Similarly, results from [39,40] are based on a case study. As
discussed in [37], results from case studies may be less suitable to generalise the findings
than Monte Carlo simulation studies based on a large number of replications.

The purpose of Section 2 is to provide researchers with a comprehensive view of two
relevant topics: the Gini index and some basic single imputation methods to deal with
the problem of missing data. First, the formal definition of the Gini index in continuous
distributions is described in Section 2. Then, we present the most common estimators of
the Gini index in discrete distributions. The variance estimation and the construction of
confidence intervals are also discussed. Finally, some common single imputation methods
are introduced in Section 2. The main contribution of this paper is to empirically compare,
in Section 3, the various single imputation methods when they are applied to the estimation
of the Gini index, and to analyse their effect on the accuracy of confidence intervals. The
conclusions are detailed in Section 4, and a brief discussion is presented in Section 5.

2. Methods
2.1. The Gini Index

Let Y be a non-negative continuous random variable that represents the incomes of
a given population. The distribution function of Y is denoted as FY(y) = P(Y ≤ y), and
f (y) is the corresponding probability density function. Finally, Y+ also denotes a random
variable with the same distribution FY(y), and it is assumed that Y+ and Y are independent.
The Gini index can be defined as (see [15]):

G =
1

2µY

∫ +∞

0

∫ +∞

0
|y+ − y|dFY(y+)dFY(y), (1)

where

µY = E[Y] =
∫ +∞

0
y f (y)dy =

∫ +∞

0
ydFY(y)

is the mean of income. Additional formulations of the Gini index can be found in [16,22,41].
Equation (1) is valid for continuous distributions. However, in practice, it is quite

common to analyse income inequality in the context of a sample survey, i.e., samples are
derived from a finite population, which is denoted as U, and it is assumed that it has size N
(see [6]). Let {Y1, . . . , YN} be N copies of Y, and {y1, . . . , yN} a realisation of these copies,
i.e., they represent the observed incomes of individuals included in the finite population.
For discrete distributions, G is generally replaced by a specific approach. For instance, the
classical approach of the Gini index based on population values is given by (see [42]):

GB
N =

1
2N2Y ∑

i∈U
∑
j∈U
|yi − yj|, (2)
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where the population of income is defined as Y = N−1 ∑i∈U yi. Note that Equation (2) is
the plug-in expression of Equation (1). As with the case of continuous distributions, many
formulations of the Gini index have been suggested for discrete distributions (see, among
others [16,43]). An exhaustive review of formulations of the Gini index for both discrete
and continuous distributions can be seen in [25]. An interesting discussion in the literature
concerns the use of the bias correction approach

GN =
N

N − 1
GB

N =
1

2N(N − 1)Y ∑
i∈U

∑
j∈U
|yi − yj|,

For instance, [17,18] explain that the bias corrected approach may minimize the bias of
GB

N . In addition, the bias of GB
N may have an impact on the coverage of confidence intervals

for the Gini index. For these reasons, GN is used throughout this paper.
In survey sampling, the population values are unknown, which implies that a random

sample S, with size n, must be selected from U under a given sampling design. The idea of
this paper is to empirically compare various common statistical procedures, some which
are designed for samples derived under simple random sampling without replacement
(SRSWOR); hence, this is the sampling design considered in this paper. A discussion on
the extension to a general sampling design can be seen in Section 5. The usual estimator of
GN is defined as

Ĝ =
n

n− 1
ĜB =

1
2n(n− 1)y ∑

i∈S
∑
j∈S
|yi − yj|,

where y = n1 ∑i∈S yi is the sample mean and

ĜB =
1

2n2y ∑
i∈S

∑
j∈S
|yi − yj|

is the estimator of GB
N .

The variance estimator or standard error of a given statistic plays an important role at
the estimation stage, since such measures give an idea of the accuracy of the point estimate,
as well as allowing the construction of confidence intervals. The variance estimation of the
Gini index has been extensively investigated, with an excellent review on this topic pro-
vided by [21], who also analyses and compares various variance estimators in the literature.
Results from [21] indicate that both jackknife and linearization approaches have desirable
properties in comparison to alternatives. Accordingly, we use these methods for variance
estimation and the construction of confidence intervals for the Gini index. An extensive
description of the linearization approach can be found in [20,44]. Relevant references that
describe the jackknife method for the Gini index are [45,46]. Some alternative methods for
variance estimation and/or construction of confidence intervals for the Gini index that can
be found in the literature are the bootstrap ([47,48]) and empirical likelihood ([22,23]).

The variance estimator for the Gini index based on the linearization approach is
defined as (see [19,21]):

V̂L(Ĝ) = V̂L

(
n

n− 1
ĜB
)
=

n2

(n− 1)2 V̂L(ĜB), (3)

where
V̂L(ĜB) = N2 1− f

n(n− 1) ∑
i∈S

(li − l)2,

f = n/N is the sampling fraction, l = n−1 ∑i∈S li and

li =
1

Ny

[
2yi F̂(yi)−

(
ĜB + 1

)
(yi + y) +

2
n ∑

j∈S
yjδ(yi ≤ yj)

]
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are the pseudo-values derived from the linearization approach (see [19]). Finally,

F̂(y) =
1
n ∑

i∈S
δ(yi ≤ y)

is the empirical distribution function based on the sample S, and δ(·) is the indicator
variable that takes the value 1 if its argument is true and 0 otherwise.

The variance estimator for the Gini index based on Ogwang’s jackknife is defined as
(see [21,43]):

V̂O(Ĝ) = V̂O

(
n

n− 1
ĜB
)
=

n2

(n− 1)2 V̂O(ĜB),

where
V̂O(ĜB) =

n− 1
n ∑

i∈S

(
ĜB(i)− GB

)2
,

GB
= n−1 ∑i∈S ĜB(i), the jackknife estimates are given by

ĜB(i) = ĜB +
2

ny− y(i)


y(i) β̂

n
+

∑n
j=1 jy(j)

n(n− 1)
−

ny−
i

∑
j=1

y(j) − iy(i)

n− 1


− 1

n(n− 1)
,

y(i) are the values yi sorted in increasing order, and

β̂ =
∑i∈S iy(i)
∑i∈S y(i)

.

Different methods can be applied to construct confidence intervals for the Gini index.
For instance, normal approximation confidence intervals for the Gini index have been exam-
ined by [18,22], among others. Assuming that the asymptotic normality assumption holds,
the (1− α)-level normal approximation confidence interval based on the linearization
variance estimator is given by(

Ĝ− z1−α/2

√
V̂L(Ĝ), Ĝ + z1−α/2

√
V̂L(Ĝ)

)
,

where za denotes the ath quantile of the standard normal distribution. Similarly, the
corresponding confidence interval based on Ogwang’s jackknife is given by(

Ĝ− z1−α/2

√
V̂O(Ĝ), Ĝ + z1−α/2

√
V̂O(Ĝ)

)
. (4)

As noted by [22], confidence intervals based on the asymptotic normality assumption
may have issues with undercoverage probabilities when samples are small. Alternatively,
bootstrap procedures may be used for the construction of confidence intervals, some of
which may depend on a given variance estimator of the Gini index. For this purpose, we
consider Ogwang’s jackknife variance estimator because the results from Section 3 indicate
that the jackknife approach provides confidence intervals with better empirical coverage
rates than the linearization approach. However, bootstrap confidence intervals based on
the linearization variance estimator can be similarly defined. Let {y∗1(b), . . . , y∗n(b)} be the
bth bootstrap sample selected from the artificial bootstrap population U∗ by SRSWOR,
and b = {1, . . . , B}, where B is the total number of bootstrap samples. Let Ĝ∗(b) and
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V̂O(Ĝ∗(b)) be, respectively, the estimates Ĝ and V̂O(Ĝ) based on the bth bootstrap sample.
A bootstrap-t confidence interval is defined as (see [22]):(

Ĝ + t∗α/2

√
V̂O(Ĝ), Ĝ + t∗1−α/2

√
V̂O(Ĝ)

)
, (5)

where t∗a denotes the ath quantile of the values

t∗(b) =
Ĝ∗(b)− Ĝ√
V̂O(Ĝ∗(b))

.

Finally, the confidence interval based on the percentile bootstrap is defined as(
Ĝ∗α/2, Ĝ∗1−α/2

)
,

where Ĝ∗a is the ath quantile of the bootstrapped values Ĝ∗(b).

2.2. Some Single Imputation Methods

We now describe the single imputation methods considered in this paper. As discussed
in Section 1, the use of auxiliary variables may considerably improve the performance of
imputation methods. For simplicity, we consider a single auxiliary variable X associated
with the variable of interest Y. In addition, we assume that missing values only appear
in the sample values of the variable Y, i.e., all the sample values of the auxiliary variable
X are observed. Note that this scheme is usually required by imputation methods based
on auxiliary variables (see [2,49]). Therefore, we consider that r of the n sample values
of the variable Y are observed (respondents), and this subset is denoted as Sr = {i ∈
S | yi is observed}. The m = n− r remaining values are considered as missing data (non-
respondents), i.e., we may define the subset Sm = {i ∈ S | yi is missing}. The proportion of
missing values in the variable of interest is thus defined as p = m/n.

The popular Random Hot Deck (RHD) imputation method (see [50]) consists of
replacing each of the m missing values with a random value selected from the r available
values of the variable Y, i.e., the missing value yi, with i ∈ Sm, is substituted by y∗i , which
is randomly selected from Sr. Although this imputation method is widely used, it has
some limitations. For example, RHD can be easily used when the sample S is selected
under SRSWOR, but a modification is required to accommodate this method to a general
sampling design with unequal inclusion probabilities. In addition, it should be noted that
this stochastic imputation method may perform better if imputation classes or adjustment
cells are created.

The regression method (see [51]) is an imputation method based on auxiliary variables.
For a single auxiliary variable and assuming the usual regression model

yi = a + bxi + ui,

where ui are independent and identically distributed random variables with zero mean,
this method consists of replacing the missing value yi, with i ∈ Sm, by

y∗i = ŷi + εi,

where
ŷi = ȳr + b̂(xi − x̄r)

is the predicted value obtained from the regression model, x̄r = r−1 ∑i∈Sr xi and ȳr =
r−1 ∑i∈Sr yi are the sample means of X and Y, respectively, and based on the sample Sr,
and

b̂ =
∑i∈Sr (xi − x̄r)(yi − ȳr)

∑i∈Sr (xi − x̄r)2 .
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Predicted values can be used to replace the missing data, but this imputation method
may underestimate the true variance of the variable of interest. For this reason, random
disturbances are usually added to the predicted values to increase variability. For instance,
εi can be randomly selected from the residuals of the regression model and associated with
the respondents, i.e., εi is a random residual taken from the set of residuals ej = yj − ŷj,
with j ∈ Sr. Alternatively, the random disturbances can be generated from a parametric
distribution, such as the normal distribution.

Finally, the Nearest Neighbour Imputation (NNI) method (see [52]) is a popular
imputation method that has also been used in many applications. The NNI method
consists of replacing each missing value with the value of the nearest observation for one
or more auxiliary variables. For a single auxiliary variable, the NNI method substitutes
the missing value yi, with i ∈ Sm, by ymin, where xmin is the value of the auxiliary variable
that minimizes the absolute distance

δi,j = |xi − xj|,

with j ∈ Sr. For the case of categorical or dichotomous variables, this distance between
neighbours is calculated as

δi,j =

{
0 i f xi = xj,
1 i f xi 6= xj.

A review of candidate distances that may be used by the NNI method can be seen
in [53]. Note that various solutions can be obtained in this minimizing problem. If this is
the case, ymin is randomly selected from among the various values of the auxiliary variable
that minimize the absolute distance.

3. Monte Carlo Simulation Studies

In this section, we empirically analyse the impact of the single imputation methods
described in Section 2.2 on the estimator Ĝ and the confidence intervals for the Gini index
defined in Section 2.1. For this purpose, we carried out a set of Monte Carlo simulation
studies based on different scenarios, which are described in Section 3.1. Results can be seen
in Section 3.2.

3.1. Description of the Study

Monte Carlo simulation studies are based on R = 1000 replications. The methods
described in Section 2 assume that survey samples (with size n) are selected from a finite
population (with size N). The population size in this study is fixed at N = 1000. The
N values of the variable Y are selected from the Lognormal distribution, which is quite
common in the modelling of income distributions. Cases of both low and high income
inequalities are considered: for this purpose we use the Gini coefficients G = {0.2, 0.6},
which are obtained when the standard deviation of the Lognormal distribution takes,
respectively, the values σ = {0.36, 1.19}. In addition, we consider the mean µ = 5 for this
distribution. The auxiliary variable is generated using the expression X = Y + ε, where ε
is a random variable with a normal distribution. The standard deviation of ε is selected
such that the correlation coefficient between Y and X takes the values ρ = {0.5, 0.95},
meaning cases of both weak and strong correlations are analysed. Applying this method,
an additional auxiliary variable Z is also generated, and where the correlation coefficient
between Y and Z is 0.7. Z is only used for the selection of missing units under the
MNAR mechanism, i.e., Z is not used for estimation purposes. For each replication, the
sample S with size n = 100 is selected from the aforementioned finite population under
SRSWOR, yielding the sample observations {y1, . . . , yn} and {x1, . . . , xn}. Then, missing
units in the variable of interest are randomly selected using the MCAR, MAR and MNAR
mechanisms, by means of the function ampute (package mice) of the statistical software R.
Different proportions of missing data are considered; specifically, p = {0.1, 0.2, 0.3, 0.4}.
In summary, we analyse 4 values of p, 2 values of both G and ρ and the 3 non-response
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mechanisms, which means that a total of 48 different scenarios are investigated. Confidence
intervals based on the bootstrap method are constructed using B = 1000 bootstrap samples.
Estimators and confidence intervals for the Gini index are calculated using: (1) all units in
the sample S (All− S); (2) Complete Case Analysis (CCA); (3) imputation and the Random
Hot Deck method (RHD); (4) imputation and the Regression imputation method (Reg);
and (5) imputation and the Nearest Neighbour Imputation method (NNI).

The various statistical methods are compared in terms of different empirical measures.
The Relative Bias

RB =
E[Ĝ]− G

G
and the Relative Root Mean Square Error

RRMSE =

(
MSE[Ĝ]

)1/2

G

are used to compare the performance of the various estimates of the true Gini index G,
where the empirical expectation is defined as

E[Ĝ] =
1
R

R

∑
r=1

Ĝ(r),

the empirical mean square error is defined as

MSE[Ĝ] =
1
R

R

∑
r=1

(
Ĝ(r)− G

)2
,

and Ĝ(r) denotes the estimator Ĝ when it is calculated at the rth replication. On the other
hand, confidence intervals are compared in terms of empirical Coverage Rate

CR =
1
R

R

∑
r=1

δ(L(r) ≤ G ≤ U(r))

and empirical Width

W =
1
R

R

∑
r=1

(U(r)− L(r)),

where L(r) and U(r) denote, respectively, the lower and upper limits of a given confidence
interval obtained at the rth replication. The confidence level is fixed at 95%.

3.2. Results

Results from the various Monte Carlo simulation studies can be seen in Figures 1–8.
Values of RB and RRMSE can be seen in Figures 1 and 2 when the true Gini index is given
by G = {0.2, 0.6}, respectively.

For a low Gini index (Figure 1), we observe that CCA and Reg yield satisfactory values
for RB under an MCAR mechanism and for the various values of p. However, for MAR
and MNAR mechanisms, values of RB for the CCA approach decrease as the values of
p increase. RHD and NNI methods produce serious biases for the various non-response
mechanisms. However, the empirical performance of NNI improves as the value of ρ
increases. As expected, Reg and NNI perform better than RHD and CCA in terms of RB
when ρ is large, and the Reg method provides smaller values of RB, in absolute terms,
than the NNI method. The various methods show poor empirical performance when ρ is
small and under an MNAR mechanism. In summary and as expected, the non-response
bias is not a serious issue under an MCAR mechanism, although RHD and NNI methods
may provide slightly biased estimates. For the MAR mechanism, the various imputation
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methods give RB values close to −2% when the proportion of missing data is p = 0.1, and
empirical biases increase, in absolute terms, as p increases, so the non-response bias may be
non-negligible for large proportions of missing data. Finally, biases based on the MNAR
mechanism are larger, in absolute terms, that those obtained from an MAR mechanism, so
the non-response bias may be a serious issue in this situation.
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Figure 1. Values of RB and RRMSE for Ĝ when estimating G = 0.2.

We may reach some different conclusions, in terms of bias, when G is large (see
Figure 2). For instance, the biases of CCA and Reg seem to be affected by p when the
MCAR assumption holds, since the values of RB decrease substantially when p = 0.4.
In addition, the Reg method shows the worst empirical performance in comparison to
alternative approaches when ρ = 0.5 and under a MAR mechanism. Finally, note that the
RB values when G = 0.2 are slightly smaller, in absolute terms, than those recorded when
G = 0.6. In summary, our results indicate that the non-response bias problem may get
worse as the Gini index increases.

As far as the empirical efficiency is concerned, for a low Gini index (see Figure 1), we
observe that the various approaches give similar values of RRMSE when ρ = 0.5, although
the CCA approach is slightly better than alternative methods. However, Reg and NNI
provide more efficient results than RHD and CCA when ρ is large, and the Reg method is
better than NNI, especially under MAR and MNAR mechanisms. Similar conclusions, in
terms of RRMSE, are reached when G = 0.6 (see Figure 2).
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Figure 2. Values of RB and RRMSE for Ĝ when estimating G = 0.6.

Confidence intervals for G = 0.2 are empirically investigated in Figures 3–5, which
consider the MCAR, MAR and MNAR mechanisms, respectively. First, we observe
that the jackknife variance estimator performs slightly better (in terms of CR) than the
linearization variance estimator (see, in Figure 3, confidence intervals based on the normal
approximation), and for this reason, the various confidence intervals in this study are based
on the jackknife variance estimator.

For the MCAR mechanism (Figure 3), CCA provides satisfactory empirical coverage
rates, but the confidence intervals widen considerably as the proportion of missing data
increases. Alternative methods perform poorly in terms of CR when ρ = 0.5, although
the Reg and NNI imputation methods also give reasonable coverage rates when ρ = 0.95,
and satisfactory values of W for the various values of p. The various methods for the
construction of confidence intervals (normal approximation, studentized bootstrap and
percentile bootstrap) give similar results. However, confidence intervals based on the
studentized bootstrap are slightly wider than confidence intervals based on alternative
methodologies (normal approximation and percentile bootstrap).

For the MAR mechanism (Figure 4), CCA also provides unsatisfactory coverage rates
as p increases. When ρ is large, the best results, in terms of CR, are obtained using the Reg
imputation method, while the RHD imputation method shows the worst performance. As
expected, a strong correlation provides better coverage rates with imputation methods
based on auxiliary variables (Reg and NNI). Note that the bias observed for the MNAR
mechanism has an impact on the coverage rates of confidence intervals. In particular,
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values of CR under the MNAR mechanism (Figure 5) are smaller than the corresponding
coverage rates under the MAR mechanism (Figure 4).
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Figure 3. Values of CR and W associated with 95% confidence intervals for G = 0.2, and based on
the jackknife variance estimator. The MCAR mechanism is considered. Linearization and jackknife
variances are compared using the normal approximation and the All − S approach.

Proportion of missing values (p)

(N
o

rm
a

l 
a

p
p

ro
x
im

a
ti
o

n
) 

 C
o
ve

ra
g

e
 R

a
te

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

3
5

5
0

6
5

8
0

9
5

ρ = 0.5 ρ = 0.95

Proportion of missing values (p)

(S
tu

d
e

n
ti
z
e

d
 b

o
o

ts
tr

a
p

) 

 C
o
ve

ra
g

e
 R

a
te

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

3
5

5
0

6
5

8
0

9
5

ρ = 0.5 ρ = 0.95

Proportion of missing values (p)

(P
e

rc
e

n
ti
le

 b
o

o
ts

tr
a

p
) 

 C
o
ve

ra
g

e
 R

a
te

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

3
5

5
0

6
5

8
0

9
5

ρ = 0.5 ρ = 0.95

Proportion of missing values (p)

(N
o

rm
a

l 
a

p
p

ro
x
im

a
ti
o

n
) 

 W
id

th

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

0
.0

5
0

.0
6

0
.0

7

ρ = 0.5 ρ = 0.95

Proportion of missing values (p)

(S
tu

d
e

n
ti
z
e

d
 b

o
o

ts
tr

a
p

) 
 W

id
th

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

0
.0

5
0

.0
6

0
.0

7

ρ = 0.5 ρ = 0.95

Proportion of missing values (p)

(P
e

rc
e

n
ti
le

 b
o

o
ts

tr
a

p
) 

 W
id

th

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

0
.0

5
0

.0
6

0
.0

7

ρ = 0.5 ρ = 0.95

All−S (jackknife)
All−S (linearization)

CCA
RHD

Reg
NNI

Figure 4. Cont.
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Figure 4. Values of CR and W associated with 95% confidence intervals for G = 0.2, and based on
the jackknife variance estimator. The MAR mechanism is considered. Linearization and jackknife
variances are compared using the normal approximation and the All − S approach.
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Figure 5. Values of CR and W associated to 95% confidence intervals for G = 0.2, and based on the
jackknife variance estimator. The MNAR mechanism is considered. Linearization and jackknife
variances are compared using the normal approximation and the All − S approach.
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Finally, results from confidence intervals for G = 0.6 can be seen in Figures 6–8. First,
we observe that confidence intervals perform worse when G = 0.6, since the values of CR
are closer to the required nominal level (95%) when G = 0.2. This is probably due to the
fact that estimates of G are slightly more biased when G = 0.6. Again, the Reg imputation
method has the best coverage rates when ρ is large, and the RHD method performs poorly
for the various scenarios analysed. For the MAR and MNAR mechanisms, the various
imputation methods provide unsatisfactory coverage rates when p is large, i.e., the bias
observed under such situations has a relevant impact on the coverage rates.
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Figure 6. Values of CR and W associated to 95% confidence intervals for G = 0.6, and based on
the jackknife variance estimator. The MCAR mechanism is considered. Linearization and jackknife
variances are compared using the normal approximation and the All − S approach.
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Figure 7. Cont.
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Figure 7. Values of CR and W associated to 95% confidence intervals for G = 0.6, and based on
the jackknife variance estimator. The MAR mechanism is considered. Linearization and jackknife
variances are compared using the normal approximation and the All − S approach.
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Figure 8. Values of CR and W associated to 95% confidence intervals for G = 0.6, and based on the
jackknife variance estimator. The MNAR mechanism is considered. Linearization and jackknife
variances are compared using the normal approximation and the All − S approach.
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4. Conclusions

The problem of missing data may appear in many real-world applications, and various
solutions can be applied to handle this problem. The solution adopted in this paper is to
use traditional single imputation methods, since they are simple techniques widely used in
many National Statistical Institutes, among other official organisms. The non-response bias
is an important issue when dealing with missing data, which requires particular attention,
especially when the MNAR assumption holds. On the other hand, income inequality
is a topic of interest in many economic studies, and the Gini index is probably the most
commonly-used indicator to measure this phenomenon. In this paper, we empirically
evaluate various traditional single imputation methods when applied to the estimation of
G, analysing them for multiple interesting scenarios that may arise in practice. In particular,
the empirical performance of the customary estimator of G is analysed, and different
methods for the construction of confidence intervals are compared. Low and high income
inequalities (G = {0.2, 0.6}), and weak and strong correlation coefficients (ρ = {0.5, 0.95})
are analysed. Finally, results are also presented for the various non-response mechanisms
(MCAR, MAR and MNAR).

First, we analyse the various non-response mechanisms. For an MCAR mechanism,
CCA and Reg provide appropriate biases. RHD and NNI may yield slightly biased
estimates, but they lie within a reasonable range. As expected, the non-response bias is
not a problem in this case. In terms of efficiency, the various approaches give similar
results for small proportions of missing data, but the CCA and RHD methods show poor
values of RRMSE when the proportion of missing data is large. The various methods
give appropriate coverage rates for a small proportion of missing data. CCA provides
satisfactory coverage rates for the various values of p, but the confidence intervals based on
CCA widen considerably as the value of p increases. Reg and NNI also yield reasonable
values of CR when ρ is large, while poor coverage rates are provided by the RHD method
as the value of p increases. For an MAR mechanism, negligible biases are obtained when
p is small, but the non-response bias can be a problem if p is large. The Reg method
provides the best results, in terms of both RB and RRMSE, when ρ is large. The various
methods only give reasonable coverage rates when p is small. The Reg method yields
good coverage rates for the various values of p when ρ is large. For an MNAR mechanism,
the non-response bias is a problem for the various methods and the various values of p.
However, the Reg method may produce reasonable biases when ρ is large, with values of
RB that can be smaller than 5%, in absolute terms, when p = 0.4. Reasonable coverage
rates are only obtained using the Reg method when ρ is large and p is smaller than 0.2,
approximately.

Second, we analyse conclusions in terms of the Gini index G. We find that biases
increase slightly, in absolute terms, as the income inequality increases. Consequently,
coverage rates of confidence intervals are closer to the required confidence level (95%) as
the Gini index decreases. As expected, the confidence intervals also widen as the value of
G increases.

Third, we analyse the empirical performance of the various imputation methods
according to the various proportions of missing data p. The biases of the CCA and Reg
methods are not affected by p when the non-response mechanism is MCAR and for low
income inequalities. Otherwise, the empirical biases increase, in absolute terms, as the
proportion of missing data increases. Similar conclusions are reached in terms of CR, i.e.,
the values of p do not have an impact on the coverage rates for the MCAR mechanism
when G is small and ρ is large. As expected, estimators are less efficient as the values of p
increase. For an MCAR mechanism, the width of confidence intervals based on the various
imputation methods is not affected by the value of p, but the width of confidence intervals
based on the CCA method increases considerably as the value of p increases. For the MAR
and MNAR mechanisms, the width of the various confidence intervals is affected by the
value of p, although the effect is not relevant for the Reg method when ρ is large.
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Fourth, we analyse conclusions in terms of correlation coefficient ρ. As expected, a
larger ρ improves the estimation of the Reg and NNI imputation methods, as they make
use of the auxiliary variable at the estimation stage. The Reg method clearly outperforms
the NNI method when ρ is large. For a large value of ρ, the Reg method can provide
empirical biases within a reasonable range for the various non-response mechanisms.
However, with a low value of ρ, the non-response bias is a serious problem because the
various imputation methods perform poorly in the presence of an MNAR mechanism.
In addition, the non-response bias is a problem when p is large and the non-response
mechanism is MAR. The conclusions are similar in relation of CR, i.e., poor coverage rates
are observed for a low value of ρ and for the MAR and MNAR mechanisms, but the Reg
method can provide appropriate values of CR when ρ is large.

Finally, we briefly describe and compare the empirical performance of the various
methods investigated in this paper. CCA can be a solution when the non-response mech-
anism is MCAR and ρ is small, but alternative approaches are preferred otherwise. This
finding implies that CCA should rarely be used in practice, since the MCAR assumption is
often unrealistic.

The traditional RHD method provide poor estimates of the Gini index, even for the
MCAR mechanism when p is large. Note that alternative and more complex techniques
can be used in the imputation process and for the various imputation methods, and may
yield better results. For instance, the use of imputation classes is a well-known technique
that may improve the accuracy of imputation methods.

The NNI method is a good solution when using auxiliary variables and may mitigate
the non-response bias problem better than the Reg method when ρ is not extremely large.

The Reg method outperforms its competitors when ρ is large, registering good results
in terms of the various empirical measures analysed in this paper and for the various non-
response mechanisms. In particular, with a large value of ρ, the Reg method outperforms
its competitors when p is large and for the MAR and MNAR mechanisms.

As far as the construction of confidence intervals is concerned, we first find that
confidence intervals based on the jackknife variance estimator provide coverage rates that
are slightly better than those obtained using the linearization variance estimator. The
normal approximation and the percentile bootstrap provide confidence intervals with
similar empirical properties, while confidence intervals based on the studentized bootstrap
are slightly wider than confidence intervals based on the normal approximation and the
percentile bootstrap.

5. Discussion

This paper points to various potential areas for future research. First, serious biases
have been detected in this study, and they have an important impact on the coverage of
confidence intervals. Therefore, the question of how to reduce these biases is an interesting
direction for future research. In particular, the bias corrected estimator Ĝ is considered,
but large biases, in absolute terms, are observed when the Gini index is large. The use
of additional bias correction procedures has the potential to be a fruitful contribution
that may improve the estimation of the Gini index and the corresponding properties of
confidence intervals.

We consider single imputation methods, but multiple imputation is also a popular
approach that may offer desirable features when it comes to the estimation of the Gini
index. Additional single imputation methods can also be investigated, such as the kNNI
imputation method (see [54,55]), the EM algorithm (see [56,57]), and the Forest imputation
method (see [58,59]), etc.

Recently, the empirical likelihood approach has been used for the construction of
confidence intervals for the Gini index (see [22–24]). The analysis of the empirical likelihood
methodology when dealing with missing data is also an interesting topic for future research.

This study could also be extended to unequal sampling designs and/or multiple
auxiliary variables. In particular, the traditional jackknife technique requires an adjustment
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for samples with unequal inclusion probabilities, and Campbell’s jackknife (see [19,60])
can be a solution when samples selected under a general sampling design suffer from the
problem of missing data.

Note that imputation methods have been evaluated here without using imputation
classes, and more efficient results are expected for the various imputation methods when
using said technique. Finally, we focus exclusively on the Gini index as the indicator to
measure inequality. However, the quintile share ratio is another statistic commonly used to
measure inequality. Thus, an interesting avenue for future research would be to analyse
the performance of the quintile share ratio when single imputation methods are used and
compare it with the results obtained in this paper.
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