Mostrar el registro sencillo del ítem

dc.contributor.authorFerri García, Ramón 
dc.date.accessioned2022-01-11T11:50:04Z
dc.date.available2022-01-11T11:50:04Z
dc.date.issued2021-12-20
dc.identifier.citationFerri-García, R... [et al.]. Weight smoothing for nonprobability surveys. TEST (2021). [https://doi.org/10.1007/s11749-021-00795-7]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/72307
dc.descriptionThis study was partially supported by Ministerio de Ciencia e Innovacion, Spain [grant number PID2019-106861RB-I00/AEI/10.13039/501100011033], the IMAG-Maria de Maeztu grant [grant number CEX2020-001105-M/AEI/10.13039/501100011033] and, in terms of the first author, a FPU grant from the Ministerio de Ciencia, Innovacion y Universidades, Spain. Funding for open access charge: Universidad de Granada/CBUA. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.es_ES
dc.description.abstractAdjustment techniques to mitigate selection bias in nonprobability samples often involve modelling the propensity to participate in the nonprobability sample along with inverse propensity weighting. It is well known that procedures for estimating weights are effective if the covariates selected in the propensity model are related to both the variable of interest and the participation indicator. In most surveys, there are many variables of interest, making weight adjustments difficult to determine as a suitable weight for one variable may be unsuitable for other variables. The standard compromise is to include a large number of covariates in the propensity model but this may increase the variability of the estimates, especially when some covariates are weakly related to the variables of interest. Weight smoothing, developed for probability surveys, could be helpful in these situations. It aims to remove the variability caused by overfit propensity models by replacing the inverse propensity weights with predicted weights obtained using a smoothing model. In this article, we study weight smoothing in the nonprobability survey context, both theoretically and empirically, to understand its effectiveness at improving the efficiency of estimates.es_ES
dc.description.sponsorshipSpanish Government PID2019-106861RB-I00/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipIMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipSpanish Governmentes_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectNonprobability sampleses_ES
dc.subjectPropensity score adjustmentes_ES
dc.subjectTree-based inverse propensity-weighted estimatores_ES
dc.subjectWeight smoothinges_ES
dc.titleWeight smoothing for nonprobability surveyses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s11749-021-00795-7
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España