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Abstract
Adjustment techniques to mitigate selection bias in nonprobability samples often
involve modelling the propensity to participate in the nonprobability sample along
with inverse propensity weighting. It is well known that procedures for estimating
weights are effective if the covariates selected in the propensity model are related
to both the variable of interest and the participation indicator. In most surveys, there
are many variables of interest, making weight adjustments difficult to determine as a
suitable weight for one variable may be unsuitable for other variables. The standard
compromise is to include a large number of covariates in the propensity model but
this may increase the variability of the estimates, especially when some covariates are
weakly related to the variables of interest. Weight smoothing, developed for proba-
bility surveys, could be helpful in these situations. It aims to remove the variability
caused by overfit propensity models by replacing the inverse propensity weights with
predicted weights obtained using a smoothing model. In this article, we study weight
smoothing in the nonprobability survey context, both theoretically and empirically, to
understand its effectiveness at improving the efficiency of estimates.

Keywords Nonprobability samples · Propensity score adjustment · Tree-based
inverse propensity-weighted estimator · Weight smoothing

Mathematics Subject Classification 62D05

1 Introduction

Probability sampling has been the gold standard for empirical research since its devel-
opment in the XXth century based on the work of Neyman (1934) and Horvitz and
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Thompson (1952) among others. For a sample to be considered probabilistic and there-
fore valid for population inferences, it must be drawn under the assumption that all the
individuals in the target population have a known and non-null inclusion probability.
If any of these conditions do not apply, we have a nonprobability sample instead. The
use of such samples in empirical sciences is widespread nowadays thanks to tech-
nological development and social media, which allows pollsters and vendors to use
new questionnaire administration methods such as online and smartphone surveys.
These surveys are usually administered via opt-in panels or by recruiting volunteers
via snowball sampling (see Schonlau and Couper 2017 for an extensive review of
methods).

Nonprobability survey methods offer several advantages over the traditional ones:
critical reduction in costs and time to accomplish the fieldwork (Bonsjak and Tuten
2003; Greenlaw and Brown-Welty 2009; Díaz de Rada 2012), and larger sample
sizes in comparison with traditional methods which are experiencing a decrease in
response rates (Kohut et al. 2012). On the other hand, nonprobability sampling induces
a selection bias in the estimates, as the participants (or sample individuals) can differ
substantially from nonparticipants (Elliott and Valliant 2017).

Several methods are available to reduce selection bias when a probability sample
from the same target population is available. Here, we mention Propensity Score
Adjustment (PSA), including the tree-based inverse propensity-weighted (TrIPW)
estimator proposed by Chu and Beaumont (2019), statistical matching (also referred
to as sample matching), as well as doubly robust estimators that combine statistical
matching ideas with PSA.

PSA was originally developed to mitigate selection bias in nonrandomized clinical
trials (Rosenbaum and Rubin 1983), and it was adapted to the survey nonresponse
field shortly after (Little 1986). PSA adapted to the nonprobability survey context as a
method to mitigate selection bias was developed by Lee (2006) and Lee and Valliant
(2009). With the PSA method, propensities to participate in a nonprobability sample
are estimated via classical modelling using a probability sample drawn from the same
population. The TrIPW estimator is an extension of the PSA estimator proposed by
Chen et al. (2020), where propensities are estimated using a weighted version of the
Classification And Regression Trees (CART) methodology (Breiman et al. 1984). The
CART algorithm builds a tree that optimizes an homogeneity measure, given a set of
covariates, which is then used to estimate propensities.

When the propensity model is properly specified, PSA is able to reduce bias of
nonprobability sample estimates at the potential cost of increasing their variability
(Lee 2006; Lee and Valliant 2009; Valliant and Dever 2011; Ferri-García and Rueda
2018). The TrIPW estimator shows itself as a more robust estimator under complex
relationships between variables, such as nonlinearities (Chu and Beaumont 2019) and
the presence of interactions.An alternative is to pool the probability and nonprobability
samples, similar to Lee (2006), and to use machine learning algorithms to model
propensities (Ferri-García and Rueda 2020).

Statistical matching focuses on another model-based approach whose objective is
to predict the unobserved values of the variable of interest in the probability sample.
The predictive model is fitted using data from the nonprobability sample. Statistical
matching has also been proven to mitigate selection bias in nonprobability samples
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(Castro-Martín et al. 2020). The combination of both strategies via doubly robust
estimators may outperform both approaches on their own Chen et al. (2020).

Despite the benefits of statistical matching techniques, they could have limitations
in surveys that collect multiple variables of interest. In those surveys, which are com-
mon in practice, each variable of interest may require a specific model to predict its
unobserved values in the probability sample. This could become cumbersome if the
number of variables of interest is large and increase the risk ofmodelmisspecifications.
The use of weighted estimators, such as the PSA and TrIPW estimators, could provide
a reasonable solution, as the same vector of weights would be used to obtain estimates
for all of the variables of interest. However, research has shown that propensity tech-
niques are more efficient when the covariates used for modelling the propensities are
related to the outcome variables, that is, the variables of interest (Hirano and Imbens
2001; Brookhart et al. 2006). In a survey with multiple variables of interest, a suitable
set of covariates may vary between variables. The standard compromise is to include a
large number of covariates in the propensity model. This may increase the variability
of the resulting estimates due to overfitting, especially when the covariates are weakly
related to the variables of interest.

In probability surveys, weight smoothing (Beaumont 2008) has been shown to be
effective at reducing the variance of survey-weighted estimators by modelling the sur-
vey weights conditional on the variables of interest. The variance of survey-weighted
estimators can be large when the design variables are unrelated to the variables of
interest. To the best of our knowledge, this technique has not been evaluated in a
nonprobability survey context, where the inclusion (or participation) probabilities are
unknown and estimated. The objective of this study is to examine the adequacy of
weight smoothing for nonprobability surveys, both theoretically and empirically, and
explore the situations that could enhance its efficiency.

2 Weighting in nonprobability surveys

Let U be a target population of size N from which we want to estimate a population
parameter, such as the population mean Ȳ = N−1 ∑

i∈U yi , for a given variable of
interest y. To this end, we obtain a nonprobability sample sv of size nv from the popu-
lation U . The participation mechanism may depend on features such as self-selection
or device availability (computer, internet access, etc.). In this case, the probability that
an individual i ∈ U is included in sv is not known a priori.

Let Ri be the indicator variable which measures whether a given individual i ∈ U
has participated or not. We assume that Ri is related to a vector of covariates, xi (e.g.
demographic variables such as region, age and sex, or education), and that participation
is not informative, i.e. Ri does not depend on yi after conditioning on xi . We define
the inclusion (or participation) probability as

πi = P(Ri = 1|xi ), i ∈ U .

The participation probability is unknown and assumed to be strictly positive. From
these assumptions, if xi is known for every i ∈ U , the participation probability can
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be estimated using standard modelling techniques along with maximum likelihood
estimation. However, this information is rarely available. An alternative is to use a
probability sample sr of size nr , drawn from the full population U that measures xi
for all sample individuals i ∈ sr . The design weight dri is also available for sample
individuals. The covariates xi are assumed to be observed in both the probability and
nonprobability samples, whereas yi is observed only in the nonprobability sample.

With PSA methods, a parametric model πi = m(xi ,β) is typically postu-
lated, where m is a known function, such as the logistic function m(xi ,β) =
{
1 + exp(−x�

i β)
}−1

, and β is a vector of unknown model parameters. Assum-
ing the participation indicators Ri , i ∈ U , are mutually independent, Chen et al.
(2020) proposed a pseudo-maximum likelihood estimator of πi , which is computed as
π̂i = m(xi , β̂), where the estimator β̂ maximizes the pseudo-log-likelihood function

l(β) =
∑

i∈sv
log

(
m(xi ,β)

1 − m(xi ,β)

)

+
∑

i∈sr
dri log (1 − m(xi ,β)) (1)

with respect to β. The design expectation of the pseudo-log-likelihood function (1)
is equal to the standard log-likelihood function, which cannot be used unless xi is
observed for all population individuals i ∈ U . The pseudo-log-likelihood function
proposed by Chen et al. (2020) may be less efficient but does not require xi to be
observed in the entire population; it only needs xi to be observed for all individuals in
sv and sr .

The population mean Ȳ can be estimated by the Hajek estimator

ȳHw = N̂−1
v

∑

i∈sv
wi yi , (2)

where N̂v = ∑
i∈sv wi and wi = π̂−1

i , i ∈ sv . Chen et al. (2020) proved the consis-
tency of the weighted estimator ȳHw under regularity conditions, i.e. they proved that

ȳHw − Ȳ = Op

(
n−1/2

v

)
.

A number of authors (e.g. Lee 2006; Lee and Valliant 2009) have considered esti-
matingπi using the pooled sample s = sr∪sv alongwith aweighted logistic regression.
If the input weights for the logistic regression are chosen as

d pool
i =

{
1 i ∈ sv
dri i ∈ sr ,

the resulting pseudo-log-likelihood function can be written as

l̃(β) =
∑

i∈sv
log

(
m(xi ,β)

1 − m(xi ,β)

)

+
∑

i∈sr
dri log (1 − m(xi ,β))+

∑

i∈sv
log (1 − m(xi ,β)) .

(3)
It can be observed that (3) is equal to the pseudo-log-likelihood function shown in (1),
except for the last term

∑
i∈sv log (1 − m(xi ,β)). Beaumont (2020) pointed out that
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if the participation probabilities πi are all small, which could be plausible when the
participation rate is small, maximizing (3) is approximately equivalent to maximizing
the pseudo-log-likelihood function (1) when the logistic function is used. As a result,
using (1) or (3) should yield similar estimated participation probabilities when the
participation rate is small. However, note that the pseudo-log-likelihood function of
Chen et al. (2020) does not require this condition and should be the preferred choice
when it is not satisfied.

This idea of pooling both samples has recently been used along with nonparametric
methods of estimating propensities, such asmachine learning classification algorithms
(e.g. Ferri-García and Rueda 2020). Similar to logistic regression, these methods are
expected to be valid only when the participation rate is small and design weights dri
are used appropriately.

The literature also accounts for other procedures to calculate weights from propen-
sities. For instance, the original literature on PSA for nonprobability samples (Lee
2006; Lee and Valliant 2009) considered the stratification of propensities into g par-
titions, usually g = 5 following the criteria of Cochran (1968), and the calculation of
weights using a correction factor that takes into account the original design weights.
Valliant and Dever (2011) considered a similar approach that also involves stratifi-
cation of propensities. The use of propensity strata may provide some robustness to
misspecifications of the logistic model and may reduce the occurrence of extreme
weights.

The TrIPW estimator of Ȳ , developed in Chu and Beaumont (2019), takes the same
form as the Hajek estimator (2), but the estimation of the participation probability
πi is based on an adaptation of the Classification And Regression Trees (CART)
algorithm (Breiman et al. 1984). This adaptation accounts for the design weights
dri , i ∈ sr , in a way similar to Chen et al. (2020). As a result, it does not require the
participation rate to be small. After the tree has been grown, using an objective function
that accounts for the design weights, the nonprobability sample sv is partitioned intoG
exhaustive and nonoverlapping homogeneous propensity groups (or terminal nodes),
sv,g , g = 1, ...,G. The probability sample is partitioned similarly using the same
decision rules into G exhaustive and nonoverlapping groups sr ,g , g = 1, ...,G. The
propensity for each individual i ∈ sv,g is estimated as:

π̂i = nv,g

N̂g
, g = 1, ...,G, (4)

where nv,g is the number of individuals in the nonprobability sample who fall in
propensity group g and N̂g = ∑

i∈sr ,g d
r
i is the estimated population size of group g.

The estimated probability (4) can be obtained using the Chen et al. (2020) method by
defining xi as a G-vector indicating to which group individual i belongs. The creation
of homogeneous propensity groups using this weighted CART algorithm is expected
to provide some robustness to misspecification of the logistic model. This was shown
by Chu and Beaumont (2019) in a simulation study.
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3 Weight smoothing

The application of weighting methods discussed in Sect. 2 can reduce significantly
the participation bias at the possible cost of increasing the variance of the estimates
(Lee 2006; Lee and Valliant 2009; Ferri-García and Rueda 2018). This variance is
directly tied to the variability of the weights and is amplified when the covariates
are weakly associated with the variable of interest. In that case, weighting increases
the variance without the benefit of a significant bias reduction. Therefore, it seems
reasonable to focus on strategies that reduce the variability of the weights. Beaumont
(2008) proposed weight smoothing for probability samples. Our objective is to study
this method in the context of nonprobability samples.

Let us assume for a moment that the logistic model holds and that β is known.
Assuming N is also known, the population mean Ȳ can be estimated by ȳβ

w =
N−1 ∑

i∈sv w
β
i yi , where w

β
i = [m(xi ,β)]−1. The superscript β is used to indicate

that β is known and to distinguish this case from the one considered throughout this
paper, where β is estimated. The weighted estimator ȳβ

w is unbiased in the sense

that E
(
ȳβ
w | X,Y

)
= Ȳ , where X is the N -row matrix formed by the row vectors

x�
i , i ∈ U , and Y is the N -vector of population y values. Under these assumptions,
the nonprobability sample can be viewed as a Poisson sample with known inclusion
probabilities πi = m(xi ,β), and the original weight smoothing method of Beaumont
(2008) can be directly applied to improve the efficiency of ȳβ

w. It consists of replacing

the weight wβ
i with the smoothed weight w̃β

i = E
(
w

β
i | sv,Y

)
. The basic idea is to

extract from the weight wβ
i its relevant component, i.e. the component that is associ-

ated with the variable of interest. Assuming the smoothed weight w̃
β
i is known, the

population mean Ȳ is estimated by ȳβ

w̃
= N−1 ∑

i∈sv w̃
β
i yi . Beaumont (2008) noted

that E
(
ȳβ

w̃
| Y

)
= Ȳ and that

var
(
ȳβ

w̃
| Y

)
≤ var

(
ȳβ
w | Y

)
. (5)

The smoothed weight w̃
β
i = E

(
w

β
i | sv,Y

)
is generally unknown but can be esti-

mated from sample data by modelling w
β
i given yi , i ∈ sv . Beaumont (2008) showed

that the resulting estimator of Ȳ remains no less efficient than ȳβ
w under a linear model.

Note that inferences under weight smoothing are conditional on Y alone. As a result,
xi is viewed as random, as well as w

β
i , but only the latter needs to be modelled.

In multipurpose surveys, there are multiple variables of interest so that yi is a
vector and Y is a matrix. The weight smoothing methodology can be extended in a
straightforward manner to a vector of variables of interest by modelling the weight
w

β
i conditional on the full vector of variables of interest. However, if the number of y

variables is large, it may be expected that together they become strongly predictive of
theweightwβ

i , thereby reducing the potential efficiency gains. An alternativewould be
to determine a specific weight smoothing model for each variable of interest, but this
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would lead to multiple smoothed weights, which may not be attractive to the ultimate
users.

With nonprobability samples, the model parameters β are unknown but can be
estimated using the Chen et al. (2020) pseudo-likelihood method discussed in Sect.

2. This yields the weight wi =
[
m(xi , β̂)

]−1
. Assuming N is known, the estimator

of the population mean Ȳ is ȳw = N−1 ∑
i∈sv wi yi . We define the smoothed weight

w̃i = E (wi | sv,Y) along with the smoothed estimator of Ȳ , ȳw̃ = N−1 ∑
i∈sv w̃i yi .

Similar to (5), it is not difficult to show that

E (ȳw̃ | Y) = Ȳ + o
(
n−1/2

v

)
and var (ȳw̃ | Y) ≤ var (ȳw | Y) . (6)

The proof of (6) is given in the appendix. Again, the smoothed weight w̃i =
E (wi | sv,Y) is generally unknown but can be estimated from sample data by mod-
elling wi given yi , i ∈ sv . For instance, consider the linear model

E (wi | sv,Y) = h�
i γ with var (wi | sv,Y) = σ 2, i ∈ sv, (7)

where the vector of predictors hi is a function of the variable(s) of interest yi , and γ

and σ 2 are unknown model parameters. The smoothed weight w̃i can be estimated by
ŵi = h�

i γ̂ , where

γ̂ =
⎛

⎝
∑

i∈sv
hih�

i

⎞

⎠

−1
∑

i∈sv
hiwi

is the least square estimator of γ . The smoothed estimator of Ȳ becomes ȳŵ =
N−1 ∑

i∈sv ŵi yi . After straightforward algebra, it can be shown that

ȳŵ = N−1
∑

i∈sv
ŵi yi = N−1

∑

i∈sv

(
h�
i γ̂

)
yi = N−1

∑

i∈sv
wi ŷi , (8)

where ŷi = h�
i α̂ is a predicted value of yi with

α̂ =
⎛

⎝
∑

i∈sv
hih�

i

⎞

⎠

−1
∑

i∈sv
hi yi . (9)

Therefore, Eq. (8) indicates that smoothing the weight wi using the predictors hi
is equivalent to smoothing yi using the same predictors. It can also be shown that

E (ȳŵ | Y) = Ȳ + o
(
n−1/2

v

)
and that

var (ȳŵ | Y) = var (ȳw | Y) − σ 2

N 2 E

⎡

⎣
∑

i∈sv

(
yi − ŷi

)2 | Y
⎤

⎦ . (10)
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The proof of (10) is given in the appendix. It confirms that the smoothed estimator
ȳŵ is never less efficient than ȳw when the linear model (7) holds. The magnitude
of efficiency gains from weight smoothing depends in part on the strength of the
relationship between the weight wi and the predictors hi . A weak relationship, and
thus a large model variance σ 2, will tend to increase efficiency gains. The efficiency
gains will also tend to be larger when hi is not a strong predictor of yi . Instead,
if hi is a perfect predictor of yi , i.e. there exists a vector α such that yi = h�

i α,
then it can be easily shown that ŷi = yi , i ∈ sv , and the efficiency gains entirely
vanish. Variance reductions may thus vary from one variable of interest to another
depending on the strength of their relationship with hi . On the one hand, overfitting
should be avoided as much as possible when choosing the predictors hi to maximize
variance reductions. Variable selection techniques, such as Least Absolute Shrinkage
and Selection Operator (LASSO), can be useful for this purpose. On the other hand,
the predictors hi should be chosen to ensure the linear model (7) holds, at least its first
moment, to avoid introducing bias in the smoothed estimator of the population mean
Ȳ .

The most favourable situation for weight smoothing is when none of the variables
of interest is related to the weight wi so that hi = 1 is appropriate. Noting that

E
(
w

β
i | sv, xi

)
= w

β
i , the most unfavourable situation would be when the variables

of interest are strong predictors of the covariates xi , and thus the weight w
β
i , so that

w̃
β
i ≈ w

β
i and basically no variance reduction is possible. In particular, this would

occur in the extreme and unlikely scenario where all the covariates would also be
variables of interest.

An estimator of the variance (10) requires estimating var (ȳw | Y). Under regularity
conditions given in Chen et al. (2020),

var (ȳw | Y) = E [var (ȳw | X,Y) | Y] + o
(
n−1

v

)
. (11)

The variance (11) can thus be estimated by estimating the conditional variance
var (ȳw | X,Y). Chen et al. (2020) proposed linearization and bootstrap estimators
of this conditional variance. We denote a consistent estimator of var (ȳw | X,Y) by
v (ȳw). A plug-in estimator of the variance (10) is thus

v (ȳŵ) = v (ȳw) − (nv − p)

N 2 σ̂ 2

∑
i∈sv

(
yi − ŷi

)2

nv − p
, (12)

where p is the number of predictors in the vector hi and

σ̂ 2 =
∑

i∈sv
(
wi − h�

i γ̂
)2

nv − p
.

Let us now consider the Hajek estimators ȳHw = N̂−1
v

∑
i∈sv wi yi and ȳH

ŵ
=

(∑
i∈sv ŵi

)−1 ∑
i∈sv ŵi yi . Using a first-order Taylor linearization and assuming an
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intercept is included in the vector of predictors hi , it can be shown that var
(
ȳH
ŵ

)
can

be approximated as

var
(
ȳH
ŵ

| Y
)

≈ var
(
ȳHw | Y

)
− σ 2

N 2 E

⎡

⎣
∑

i∈sv

(
yi − ŷi

)2 | Y
⎤

⎦ . (13)

As a result, the variance reduction for the Hajek estimator ȳH
ŵ

is asymptotically the
same as the variance reduction for ȳŵ. Similar to (12), an estimator of the variance
(13) can be obtained as

v
(
ȳH
ŵ

)
= v

(
ȳHw

)
− (nv − p)

N̂ 2
v

σ̂ 2

∑
i∈sv

(
yi − ŷi

)2

nv − p
,

where v
(
ȳHw

)
is a consistent estimator of the conditional variance var

(
ȳHw | X,Y

)
,

such as the linearization and bootstrap estimators proposed in Chen et al. (2020).
The variance expressions (10) and (13) are valid only for the linear smoothing

model (7). In practice, a linear model may not always hold even after accounting for
interactions and/or polynomial effects. Nonlinear smoothing models could also be
considered. For variance estimation under nonlinear models, Beaumont (2008) pro-
posed two bootstrap methods that could be adapted to the context of nonprobability
surveys. In our simulation studies, described in the next sections, we evaluate the
prediction algorithm XGBoost as an alternative to the linear model (7) for the estima-
tion of smoothed weights. The development of theoretical properties of XGBoost for
weight smoothing is beyond the scope of this paper.

4 Data

4.1 Artificial data

We created a population of size N = 500, 000 with 10 covariates (x1, ..., x10), 10
variables of interest (y1, ..., y10) and a variable πi indicating the propensity of each
individual to participate in a volunteer sample. The covariates were generated from
Bernoulli and Normal distributions as follows:

x1, x4, x7 ∼ Be(0.5),

x3, x6, x9 ∼ Be(0.2) and

x2, x5, x8, x10 ∼ N (0, 1).

Nonprobability samples of size nv were selected without replacement with proba-
bilities proportional to

π∗
i = exp(−0.5 + 2.5x7 + √

2πx8 − (11/3)x9)

1 + exp(−0.5 + 2.5x7 + √
2πx8 − (11/3)x9)

, i = 1, 2, ..., 500, 000,
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Probability of inclusion
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Fig. 1 Histogram of the population propensities

using the sample() function in R. Therefore, the participation probabilities πi depend
on the values of x7, x8 and x9 and are approximately equal to

πi ≈ nv

π∗
i∑

i∈U π∗
i

.

This participation mechanism was intended to create weights with high variability,
a situation where the advantages of weight smoothing might be more visible. The
histogram of propensities πi , i ∈ U , is provided in Fig. 1; the mean propensity is
0.002, with a standard deviation of 0.00147, and thus a coefficient of variation of
0.7351. The first and third quartiles are 0.00044 and 0.00354, respectively.

The variables of interest were created to have different relationships with the covari-
ates and the propensities according to two scenarios:

Sc. 1. No relationship between any variable in (y1, ..., y10) and π

Sc. 2. Relationship between every variable in (y1, ..., y10) and π

Scenario 1 is favourable to weight smoothing, whereas Scenario 2 is unfavourable.
In practice, we may expect to have a hybrid between these two scenarios, where some
but not all covariates that explain πi are unrelated to the variables of interest.

The generation of the variables of interest was performed according to the following
formulas:

y1 ∼ B

(
exp(−1 + 3x1 + x2 + x3 + 1Sc. 25π)

1 + exp(−1 + 3x1 + x2 + x3 + 1Sc. 25π)

)

,

y2 ∼ N (0, 1) − 1 + 3x1 + x2 + x3 + 1Sc. 25,
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Table 1 Population Pearson’s correlation coefficients between π and (y1, ..., y10) in Scenarios 1 and 2

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Scenario 1 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.0

Scenario 2 0.39 0.66 −0.43 0.18 0.6 0.16 −0.18 −0.6 −0.12 0.6

y3 ∼ B

(
exp(−1 + x1 + x2 + 3x3 − 1Sc. 25π)

1 + exp(−1 + x1 + x2 + 3x3 − 1Sc. 25π)

)

,

y4 ∼ B

(
exp(1Sc. 2π)

1 + exp(1Sc. 2π)

)

,

y5 ∼ N (0, 1) + 2 + 1Sc. 22π,

y6 ∼ B

(
exp(−1.5 + 1Sc. 2π)

1 + exp(−1.5 + 1Sc. 2π)

)

,

y7 ∼ B

(
exp(−1Sc. 2π)

1 + exp(−1Sc. 2π)

)

,

y8 ∼ N (0, 1) − 2 − 1Sc. 22π,

y9 ∼ B

(
exp(−1.5 − 1Sc. 2π)

1 + exp(−1.5 − 1Sc. 2π)

)

and

y10 ∼ N (2, 1) + 1Sc. 22π,

where 1Sc. 2 is an indicator variable which takes the value 1 if the simulation is con-
ducted under Scenario 2 and 0, otherwise. It can be observed that we have 6 Bernoulli
and 4 Gaussian variables among (y1, ..., y10) whose parameters depend on the sce-
nario. The vector of population means for Scenario 1 is (0.60, 0.70, 0.50, 0.50, 2.00,
0.18, 0.50, -2.00, 0.18, 0.00), while the vector of population means for Scenario 2 is
(0.84, 3.25, 0.21, 0.62, 3.02, 0.28, 0.38, -3.02, 0.12, 1.02). Table 1 contains Pearson’s
correlation coefficients between the propensities π and each variable of interest for
both scenarios. We see that the correlation is nonexistent in Scenario 1 and notable for
all the variables in Scenario 2, with different levels of strength caused by the limita-
tions of using this measure on binary variables. Table 2 presents the results of t tests
of the equality between the means of π for yk = 0 and yk = 1, for k = 1, 3, 4, 6, 7, 9,
in Scenario 2.

4.2 Real data

The dataset used to experiment in a real life situation comes from the 2012 edition
of the Spanish Life Conditions Survey (National Institute of Statistics 2012). This is
an annual survey measuring several aspects of life conditions, such as health status,
degree of deprivation and employment conditions, in the Spanish adult population. The
survey includes specific modules in each edition; in 2012, the module consisted of a
battery of questions regarding household conditions. The sampling design follows a
stratified cluster scheme, where the primary units are the households and the secondary
units are their members. The total sample size in 2012 was n = 33, 579.
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Table 2 Results of t tests of the equality between the means of π for binary classes of y1, y3, y4, y6, y7
and y9 in Scenario 2

k Mean of π (yk = 0) Mean of π (yk = 1) t p-value

1 0.0007 0.0023 −401.35 <2.2e-16

3 0.0023 0.0008 397.20 <2.2e-16

4 0.0017 0.0022 −128.61 <2.2e-16

6 0.0019 0.0024 −116.84 <2.2e-16

7 0.0022 0.0017 128.70 <2.2e-16

9 0.0021 0.0015 88.17 <2.2e-16

For its use as a pseudopopulation, the sample dataset was filtered to rule out those
individuals and variables with high amounts of missing data. This reduced the dataset
to n = 28, 210 and 146 variables, from which 61 were selected for the simulations.
The sample was subsequently bootstrapped in order to increase its size to 1, 000, 000.
Finally, all the individuals who selected any of the refusal options ("Does not know" or
"Does not answer") were also ruled out of the analysis to avoid further problems with
rare classes. The final pseudopopulation size for the experiments was N = 990, 838.

For the experiments, we chose HS090 (Owning a computer at home) as the volun-
teering variable, given that its behaviour would be very similar to a variable measuring
access to internet (see Ferri-García and Rueda 2020 for further details on this mat-
ter). The extraction of the nonprobability sample sv was done under two different
mechanisms:

– Simple Random SamplingWithout Replacement (SRSWOR) from the population
who has a computer at home.

– Unequal probability sampling without replacement from the population who has
a computer at home, where the probabilities are calculated as

(Year of birth − 1925)4

(1996 − 1925)4
.

Regarding covariates, two different sets were considered:

– A set of nine demographic variables, namely region, urbanization level, number of
members of the household and consumption units (weighted mean of the number
of members of the household following OECD criteria, where adults have more
weight than teenagers and teenagers have more weight than children), sex, marital
status, country of birth, nationality, andwhether the individual is currently a student
or not.

– A set of eight variables related to economic and material deprivation, namely
capacity of the household to make ends meet, minimum income required by the
household to make ends meet, whether the household has the capacity to go on
holiday, have a meat or fish meal at least every two days, and deal with unfore-
seen expenses, household under the poverty threshold, person under the poverty
threshold, and household in a situation of severe material deprivation.
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Ten variables were used as variables of interest, the last two being randomly generated:

– y1 = Household expenses are a heavy burden (ordinal scale, 1-3)
– y2 = Household has a car (dichotomous)
– y3 = Self-reported health (5-point Likert scale)
– y4 = Disability in the previous 6 months (ordinal scale, 1-3)
– y5 = Number of months working part-time (integer, 0-12)
– y6 = Household expenses in EUR (continuous)
– y7 = Household with noise problems (dichotomous)
– y8 = Household with heating system (dichotomous)
– y9 = Simulated random Be(0.5) variable
– y10 = Simulated random N(2, 1) variable

5 Experimental design andmetrics

The settings of the experiment were kept as equal as possible for all simulation sce-
narios. Each simulation was run 500 times, drawing probability and nonprobability
samples of equal sizes (nr = nv = 1, 000) using the nonprobability sampling designs
described in the previous section to select sv . The probability sample sr was selected
using SRSWOR in all scenarios so that dri = N

nr
.

Two approaches were applied to estimate nonprobability sample propensities πi :
weighted logistic regression with main effects only, and weighted CART described in
Sect. 2 (see Eq. 4) with a fixed minimum cell size of 50 and minimum cell impurity of
0.0001. For weighted logistic regression, the model parameters β were estimated by
maximizing the pseudo-log-likelihood function (3), which should be approximately
equivalent to maximizing the pseudo-log-likelihood function of Chen et al. (2020),
given the participation rates are small in our simulation scenarios (0.002 for the arti-
ficial data simulation and 0.001 for the real data simulation).

Two methods were considered for the estimation of the smoothed weights
E (wi | sv,Y), where the weight wi = 1/π̂i is obtained using either weighted logistic
regression or weighted CART:

– XGBoost algorithm (XGB) using the xgboost package in R (Chen and Guestrin
2016).

– Least Absolute Shrinkage and Selection Operator (LASSO) regression using the
glmnet package in R (Friedman et al. 2010).

All 10 variables of interest (described in the previous section) were considered as
potential predictors of wi for both XGBoost and LASSO. The XGBoost algorithm
was trained with default hyperparameters: a L1 regularization term of 0.1, a L2 regu-
larization term of 0.0001 and a learning rate of 0.3. The number of rounds was fixed
at 50. In the case of LASSO, wi was modelled using a linear model with main effects
only (no interaction). The optimal shrinkage parameter was obtained with a tenfold
cross-validation procedure in each run of the simulation.

Relative measures ofMonte Carlo bias andMonte CarloMean Square Error (MSE)
were calculated to allow for the comparison between seven estimators of the popula-
tion mean Ȳ . These seven estimators can be divided into three categories: the naive
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unweighted (Unw) estimator,

ȳUnw =
∑

i∈sv yi
nv

,

the nonsmoothed (NS) Hajek estimator,

ȳHw =
∑

i∈sv wi yi
∑

i∈sv wi

and the smoothed Hajek estimator

ȳH
ŵ

=
∑

i∈sv ŵi yi
∑

i∈sv ŵi
,

where ŵi is the smoothed weight obtained using either XGB or LASSO. The
unweighted estimator ȳUnw is used as a reference for the comparisons. It can be
obtained from the smoothed Hajek estimator by replacing ŵi with the average of wi

over the nonprobability sample individuals. It is the most extreme form of smoothing
that can be obtained from the linear model (7) with hi = 1. It is well known that the
unweighted estimator may result in significant biases. There are two versions of the
NS estimator ȳHw , depending on whether π̂i was obtained using a weighted logistic
regression, yielding the PSA estimator of Ȳ , or weighted CART, yielding the TrIPW
estimator of Ȳ . There are two smoothed estimators (XGB and LASSO), and each of
them has two versions depending on the estimation method for πi . There are thus four
different smoothed estimators.

Let ȳ∗ be any of the seven estimators described above. The Monte Carlo bias,
standard deviation and MSE of ȳ∗ are defined as

Bias(ȳ∗) = 1

500

500∑

j=1

ȳ∗
j − Ȳ ,

StdDev(ȳ∗) =

√
√
√
√
√

1

499

500∑

j=1

(

ȳ∗
j − 1

500

500∑

l=1

ȳ∗
l

)2

and
MSE(ȳ∗) = StdDev2(ȳ∗) + Bias2(ȳ∗),

respectively, where ȳ∗
j is the j th simulation replicate of ȳ∗, computed from the j th

replicates of sv and sr . From these quantities, we computed the Monte Carlo absolute
relative bias and Monte Carlo relative MSE defined as

RelBias(ȳ∗) =
∣
∣
∣
∣
Bias(ȳ∗)

Ȳ

∣
∣
∣
∣
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and

RelMSE(ȳ∗) = MSE(ȳ∗)
MSE(ȳUnw)

,

respectively.

6 Results

6.1 Artificial data simulation

The relative bias of estimators can be consulted in Table 3 for both scenarios. As
expected, all the estimators in Scenario 1, where there is no relationship between any
of the 10 variables of interest and the participation probability π , show very low bias.
This is not the case of Scenario 2 for which each variable of interest is related to π . As
expected, the unweighted estimator is the most biased. Both nonsmoothed estimators
(PSA and TrIPW) were effective at reducing the bias of the unweighted estimator. The
TrIPW estimator achieved reductions of more than half of the original bias for almost
every variable. The PSA estimator reduced bias to a lesser extent. The magnitude

Table 3 Relative bias (RelBias) for each variable, estimator and artificial data scenario

Sc. Obj. Unw PSA TrIPW

NS XGB LASSO NS XGB LASSO

1 y1 0.0009 0.0012 0.0012 0.0003 0.0007 0.0006 0.0018

y2 0.0033 0.0070 0.0069 0.0025 0.0007 0.0007 0.0024

y3 0.0017 0.0005 0.0006 0.0010 0.0013 0.0014 0.0021

y4 0.0009 0.0002 0.0001 0.0007 0.0011 0.0011 0.0001

y5 0.0004 0.0005 0.0005 0.0005 0.0022 0.0022 0.0013

y6 0.0025 0.0008 0.0009 0.0025 0.0045 0.0042 0.0051

y7 0.0014 0.0020 0.0020 0.0015 0.0013 0.0012 0.0016

y8 0.0008 0.0004 0.0004 0.0006 0.0000 0.0001 0.0001

y9 0.0013 0.0007 0.0008 0.0017 0.0033 0.0030 0.0004

y10 0.0009 0.0016 0.0016 0.0011 0.0012 0.0012 0.0016

2 y1 0.1259 0.0952 0.0954 0.0957 0.0704 0.0706 0.0724

y2 0.4240 0.2795 0.2796 0.2808 0.1798 0.1798 0.1866

y3 0.5970 0.4471 0.4486 0.4494 0.3312 0.3332 0.3421

y4 0.1024 0.0699 0.0702 0.0710 0.0468 0.0470 0.0512

y5 0.1824 0.1212 0.1213 0.1219 0.0777 0.0777 0.0810

y6 0.1946 0.1259 0.1267 0.1283 0.0820 0.0827 0.0910

y7 0.1676 0.1117 0.1124 0.1137 0.0706 0.0709 0.0781

y8 0.1825 0.1211 0.1211 0.1217 0.0783 0.0783 0.0816

y9 0.2350 0.1607 0.1618 0.1634 0.1086 0.1090 0.1177

y10 0.1824 0.1218 0.1219 0.1225 0.0778 0.0778 0.0811
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of bias remains moderate, except for variables y2 and y3. Given participation is not
informative and the logistic model is correctly specified, albeit with the inclusion of
too many covariates, the bias of the PSA estimator is most likely explained by the
presence of very small participation probabilities so that a non-negligible proportion
of individuals never get selected in any of the 500 simulation replicates (around 47%).
Monte Carlo bias occurs if the population mean of those who are never selected is
different from the overall population mean. This bias would be expected to decrease if
the number of simulation replicates could be significantly increased so that a smaller
proportion of individuals never get selected.

In both scenarios, the application of weight smoothing did not produce significant
changes in bias. Weight smoothing is intended to reduce variance, not bias. It is thus
not surprising to observe that it did not reduce bias, but it is reassuring to see that it
did not significantly increase it either.

The relative MSE or efficiency of estimators for each scenario can be seen in Table
4. Values below 1 indicate that the estimator performed better than the unweighted
estimator. Scenario 1 is favourable to weight smoothing, and the unweighted estimator
is the most efficient since it corresponds to the most extreme form of smoothing. As
expected, the nonsmoothed estimators (PSA and TrIPW) were both less efficient than
the unweighted estimator due to the variability of weights. The TrIPW estimator was
less efficient than the PSA estimator with anMSE around twice that of the unweighted
estimator. On the one hand, smoothing using LASSO was very effective at improving
efficiency. TheLASSOsmoothed estimatorswere almost as efficient as the unweighted
estimator with a relativeMSE close to 1. On the other hand, smoothing usingXGBoost
produced only marginal efficiency improvements. It appears that variable selection is
useful for variance reduction as pointed out in Sect. 3 for the linear model (7). The
following hybrid approach might provide better results than LASSO or XGBoost
alone: first, select predictors from the variables of interest using LASSO and then
smooth using XGBoost and the selected predictors in the first step.

In Scenario 2, the unweighted estimator is the least efficient due to its bias. Both
nonsmoothed estimators improve efficiency by reducing bias, the MSE reduction
being more pronounced for the TrIPW estimator. Scenario 2 is unfavourable to weight
smoothing as all variables of interest are related to the participation probability. The
smoothed weights ŵi are thus expected to be in the neighbourhood of the original
propensity weights wi . As a result, none of the two smoothing methods produced any
significant change in MSE, neither positive nor negative.

Overall, considering both scenarios, the TrIPW estimator combined with LASSO
smoothing seems to offer the best compromise in terms of both bias and variance.
In practice, a scenario in between these two extreme ones could be expected, where
some variables of interest would be related to the propensity weight wi and others
would not. In that case, propensity weighting would contribute to bias reduction for
variables of interest related to the propensity weight and LASSO smoothing would
reduce variance for other variables provided the predictors are not too strongly related
to the propensity weight.
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Table 4 Relative MSE (RelMSE) for each variable, estimator and artificial data scenario

Sc. Obj. PSA TrIPW

NS XGB LASSO NS XGB LASSO

1 y1 1.2063 1.1918 0.9906 2.0446 2.0346 1.1913

y2 1.3785 1.3806 1.0173 2.1675 2.1673 1.1885

y3 1.3097 1.2909 1.0714 2.1058 2.0749 1.1705

y4 1.1612 1.1516 1.0255 1.8567 1.8366 1.0877

y5 1.1731 1.1701 1.0287 1.8120 1.8107 1.0946

y6 1.2651 1.2483 1.0670 1.7955 1.7812 1.1350

y7 1.1379 1.1219 1.0358 2.0513 2.0291 1.1812

y8 1.1272 1.1261 1.0124 1.9452 1.9491 1.0734

y9 1.1819 1.1701 1.0329 1.7407 1.7265 1.0724

y10 1.1882 1.1901 1.0175 1.9817 1.9799 1.0969

2 y1 0.5802 0.5822 0.5856 0.3407 0.3417 0.3586

y2 0.4377 0.4380 0.4417 0.1895 0.1895 0.2034

y3 0.5667 0.5703 0.5722 0.3280 0.3318 0.3488

y4 0.5039 0.5080 0.5178 0.3047 0.3060 0.3405

y5 0.4455 0.4457 0.4501 0.1922 0.1922 0.2080

y6 0.4713 0.4762 0.4865 0.3067 0.3089 0.3413

y7 0.4853 0.4903 0.4994 0.2839 0.2853 0.3177

y8 0.4440 0.4443 0.4486 0.1935 0.1935 0.2094

y9 0.5554 0.5602 0.5688 0.4516 0.4509 0.4673

y10 0.4494 0.4495 0.4540 0.1945 0.1945 0.2105

6.2 Real data simulation

The relative bias of estimators for the two different set of covariates can be observed
in Table 5 for the real data simulation when SRSWOR is used to draw sv from the
subpopulation having a computer at home. The unweighted estimator shows a small-
to-moderate bias in all cases, except for variable y5 where the relative bias is slightly
above 20%. The nonsmoothed estimators show relative biases similar to those of
the unweighted estimators, albeit slightly reduced. This indicates that covariates are
weakly associated with both the variables of interest and having a computer at home.
As expected, the smoothed estimators did not reduce further the bias but did not
increase it either.

The relative bias of estimators for the two sets of covariates when unequal probabil-
ity sampling is used to select sv from the subpopulation having a computer at home can
be seen in Table 6. The unweighted estimator shows a small-to-moderate bias, except
for variables y3, y5 and y6. Again, the nonsmoothed estimators were ineffective at
reducing bias in general. Indeed, for variable y5, the relative bias of the nonsmoothed
estimators was significantly larger than the unweighted estimator. As expected, the
smoothed estimators did not reduce the bias of the nonsmoothed estimator but did not
increase it either.
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Table 5 Relative bias (RelBias) for each variable, estimator and set of covariates when using SRSWOR
to draw sv from the subpopulation having a computer at home

Cov. Obj. Unw PSA TrIPW

NS XGB LASSO NS XGB LASSO

Dem. y1 0.012 0.016 0.016 0.015 0.022 0.021 0.022

y2 0.118 0.113 0.113 0.114 0.111 0.111 0.111

y3 0.085 0.072 0.072 0.073 0.071 0.071 0.071

y4 0.036 0.031 0.031 0.032 0.032 0.031 0.032

y5 0.209 0.188 0.188 0.193 0.174 0.185 0.174

y6 0.105 0.092 0.092 0.094 0.090 0.094 0.090

y7 0.051 0.038 0.039 0.044 0.034 0.042 0.035

y8 0.084 0.084 0.084 0.084 0.088 0.085 0.088

y9 0.002 0.002 0.002 0.002 0.000 0.000 0.000

y10 0.001 0.001 0.001 0.001 0.000 0.000 0.000

Dep. y1 0.012 0.004 0.004 0.004 0.002 0.003 0.002

y2 0.119 0.108 0.108 0.109 0.096 0.098 0.096

y3 0.085 0.080 0.080 0.080 0.075 0.075 0.075

y4 0.036 0.034 0.034 0.034 0.033 0.032 0.033

y5 0.211 0.224 0.224 0.220 0.228 0.232 0.228

y6 0.106 0.080 0.080 0.081 0.066 0.071 0.066

y7 0.058 0.071 0.071 0.070 0.080 0.083 0.080

y8 0.082 0.047 0.047 0.049 0.028 0.030 0.028

y9 0.000 0.001 0.001 0.000 0.001 0.001 0.001

y10 0.001 0.000 0.000 0.000 0.002 0.002 0.002

The relative MSE of estimators for the two sets of covariates under SRSWOR can
be seen in Table 7. The nonsmoothed estimators are moderately more efficient than
the unweighted estimator in general, which may partly be explained by their slightly
smaller biases. However, for the artificial variables y9 and y10, the relative MSE of the
nonsmoothed estimators is larger than 1, albeit only marginally. This indicates that the
propensity weights wi do not exhibit a large variability. As a result, weight smoothing
cannot achieve large variance reductions.

The relative MSE of estimators for the two sets of covariates under unequal prob-
ability sampling can be seen in Table 8. The nonsmoothed estimators show mitigated
results, sometimes being more efficient than the unweighted estimator (typically when
propensityweighting reduces bias) and sometimes not. For variable y5, the inefficiency
of the nonsmoothed estimators is due to their increased bias as noted above. Weight
smoothing did not achieve large efficiency gains, except for a few cases where the
nonsmoothed estimator was less efficient than the unweighted estimator. This limited
efficiency improvementmight be explained by a somewhat strong relationship between
the variables of interest and the covariates, or a small variability of the propensity
weights wi , so that the smoothed weights may not exhibit substantial deviations from
wi .
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Table 6 Relative bias (RelBias) for each variable, estimator and set of covariates, when using unequal
probability sampling to draw sv from the subpopulation having a computer at home

Cov. Obj. Unw PSA TrIPW

NS XGB LASSO NS XGB LASSO

Dem. y1 0.018 0.014 0.014 0.016 0.010 0.012 0.010

y2 0.121 0.128 0.128 0.125 0.129 0.123 0.129

y3 0.243 0.195 0.196 0.200 0.172 0.175 0.172

y4 0.080 0.074 0.074 0.074 0.071 0.070 0.071

y5 0.282 0.560 0.554 0.499 0.597 0.594 0.588

y6 0.177 0.203 0.203 0.194 0.249 0.256 0.249

y7 0.093 0.077 0.079 0.090 0.091 0.110 0.092

y8 0.038 0.048 0.048 0.050 0.062 0.059 0.063

y9 0.000 0.001 0.001 0.000 0.004 0.004 0.004

y10 0.001 0.002 0.002 0.001 0.000 0.000 0.001

Dep. y1 0.019 0.010 0.010 0.011 0.002 0.004 0.003

y2 0.121 0.115 0.115 0.116 0.106 0.107 0.106

y3 0.243 0.241 0.241 0.242 0.240 0.240 0.240

y4 0.080 0.080 0.080 0.080 0.080 0.079 0.080

y5 0.286 0.327 0.326 0.315 0.365 0.365 0.364

y6 0.177 0.145 0.145 0.147 0.130 0.135 0.130

y7 0.092 0.092 0.092 0.092 0.110 0.111 0.110

y8 0.038 0.018 0.018 0.020 0.005 0.005 0.005

y9 0.001 0.001 0.001 0.001 0.001 0.001 0.001

y10 0.002 0.002 0.002 0.002 0.001 0.001 0.001

7 Discussion

Weight smoothing was introduced by Beaumont (2008) for reducing the variance
of estimates from probability samples. It consists of modelling the survey weight
conditional on the variables of interest and then replacing the weight with its predicted
value. This paper extends this idea to nonprobability samples, where the weight is
itself estimated from a propensity model. Our assumption was that it could improve
efficiencywhen there are covariates in the propensitymodel that are weakly associated
with the variables of interest.

First, we have shown theoretically that the smoothed estimator is never less efficient
that its nonsmoothed version under a linear model for the propensity weight wi . The
magnitude of the efficiency gains depends on the strength of the variables of interest for
predicting the propensity weight. It also depends on how powerful the predictors of the
propensityweight are for predicting each of the variables of interest. Then,we designed
two simulation studies, based on artificial and real data, to evaluate the properties of
weight smoothing. The results showed that weight smoothingmay contribute to reduce
theMSE, particularlywhen nonsmoothed estimators (obtained usingweighted logistic
regression or weighted CART) are less efficient than the simple unweighted estimator.
For instance, this would occur when the variables of interest are weakly related to the
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Table 7 Relative MSE (RelMSE) for each variable, estimator and set of covariates when using SRSWOR
to draw sv from the subpopulation having a computer at home

Cov. Obj. PSA TrIPW

NS XGB LASSO NS XGB LASSO

Dem. y1 1.397 1.392 1.277 2.271 2.123 2.239

y2 0.917 0.918 0.930 0.870 0.874 0.873

y3 0.722 0.723 0.750 0.704 0.713 0.705

y4 0.740 0.741 0.769 0.755 0.748 0.756

y5 0.866 0.865 0.889 0.847 0.894 0.846

y6 0.763 0.763 0.797 0.727 0.778 0.728

y7 0.861 0.867 0.907 0.910 0.952 0.909

y8 0.997 0.996 0.996 1.122 1.067 1.122

y9 1.034 1.033 1.008 1.123 1.091 1.117

y10 1.051 1.050 1.020 1.106 1.100 1.107

Dep. y1 0.459 0.460 0.477 0.692 0.668 0.688

y2 0.829 0.831 0.841 0.667 0.688 0.671

y3 0.885 0.885 0.900 0.797 0.797 0.798

y4 0.899 0.898 0.904 0.817 0.794 0.816

y5 1.096 1.095 1.060 1.229 1.251 1.229

y6 0.572 0.573 0.596 0.417 0.473 0.418

y7 1.228 1.228 1.207 1.573 1.570 1.569

y8 0.409 0.411 0.437 0.243 0.251 0.245

y9 1.020 1.017 1.015 1.122 1.072 1.115

y10 1.000 0.999 0.991 1.165 1.143 1.166

covariates used in the propensity model. When the nonsmoothed estimators reduced
bias and were more efficient than the unweighted estimator, weight smoothing did not
yield significant efficiency gains in our simulation scenarios although it would remain
theoretically possible.

In the real data simulation, there were some remarkable exceptions to the behaviour
described above. In a few cases, the nonsmoothed estimators were largely inefficient,
but weight smoothing could not improve the results. In those cases, propensity weight-
ing contributed to increasing the bias, rather than reducing it. This may occur when the
propensitymodel ismisspecified (Lee 2006; Ferri-García andRueda 2020). Therefore,
the resulting augmentation of the MSE was due to an increase in bias, not variance.
This explains why weight smoothing could not improve efficiency in those cases as it
is not designed to reduce bias.

Regarding weight smoothing methods, LASSO regression presented better results
overall than XGBoost in terms of MSE reduction. LASSO regression involves vari-
able selection, which can be particularly relevant when some variables of interest are
weakly related to the propensity weight. As shown theoretically for a linear model, no
efficiency gain can be achieved for the estimation of the population mean of a variable
when this variable is included in the smoothing model. Therefore, a hybrid method
that would first select important variables using LASSO and then apply XGBoost to
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Table 8 Relative MSE (RelMSE) for each variable, estimator and set of covariates, when using unequal
probability sampling to draw sv from the subpopulation having a computer at home

Cov. Obj. PSA TrIPW

NS XGB LASSO NS XGB LASSO

Dem. y1 0.797 0.797 0.930 0.817 0.796 0.817

y2 1.124 1.117 1.073 1.144 1.049 1.138

y3 0.650 0.654 0.679 0.506 0.529 0.508

y4 0.852 0.853 0.848 0.802 0.779 0.801

y5 3.488 3.414 2.847 4.697 4.597 4.571

y6 1.318 1.320 1.206 1.955 2.065 1.957

y7 0.983 0.996 1.031 1.646 1.721 1.655

y8 1.522 1.547 1.556 2.701 2.408 2.766

y9 1.464 1.444 1.172 2.261 1.915 2.244

y10 1.454 1.456 1.190 1.990 1.830 1.990

Dep. y1 0.468 0.473 0.504 0.386 0.383 0.386

y2 0.907 0.909 0.920 0.760 0.777 0.764

y3 0.990 0.990 0.994 0.977 0.976 0.977

y4 0.996 0.996 0.996 0.992 0.982 0.992

y5 1.265 1.261 1.188 1.588 1.581 1.580

y6 0.673 0.674 0.696 0.544 0.589 0.544

y7 1.001 1.004 0.999 1.322 1.311 1.324

y8 0.529 0.531 0.575 0.467 0.446 0.465

y9 1.002 1.000 1.003 1.230 1.160 1.227

y10 1.040 1.039 1.021 1.200 1.173 1.199

predict the propensity weight using the variables selected in the first step might be
more effective than LASSO or XGBoost alone. This could be investigated in future
research.

The nonsmoothed TrIPW estimator (weighted CART) appeared more effective at
reducing bias than the nonsmoothed PSA estimator (weighted logistic regression)
in a majority of cases. However, the TrIPW estimator was sometimes less efficient
than the PSA estimator. In those cases, weight smoothing was effective at reducing
the MSE to a level similar to the MSE of the PSA estimator. This suggests that a
reasonable weighting strategy to use as a default choice when adjusting for selection
bias in nonprobability surveys could be to use weighted CART to obtain the propensity
weight wi followed by weight smoothing.

The present empirical study has some limitations that should be noted. First, we
did not consider creating homogeneous propensity strata after logistic regression.
This is quite common in the context of survey nonresponse and has the advantage
of reducing the occurrence of extreme propensity weights as well as providing some
robustness to model misspecifications. Second, only two prediction algorithms were
proposed for weight smoothing. There is currently a wide range of algorithms in the
machine learning literature. Further studies could explore other prediction algorithms
for weight smoothing or consider other strategies for hyperparameter tuning, which
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could lead to better results. Finally, the data used for our simulations cover a limited
range of situations; for instance, the artificial data simulation only considered a U-
shaped distribution for the participation probabilities, and the real data simulation
presented a situation where the selection bias was not extremely large. Other more
realistic scenarios should be considered in future research on this topic. In addition, the
number of variables of interest in the simulationswasfixed at 10. Further research could
consider scenarios where the number of variables of interest is significantly larger, as
it is likely to have an impact on the properties of weight smoothing estimators.
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A Proof of result (6)

Under regularity conditions given in Chen et al. (2020),

E (ȳw | X,Y) = Ȳ + o
(
n−1/2

v

)
.

As a result,

E (ȳw | Y) = E [E (ȳw | X,Y) | Y] = Ȳ + o
(
n−1/2

v

)
. (14)

In addition, we also have that

E (ȳw | Y) = E [E (ȳw | sv,Y) | Y] = E (ȳw̃ | Y) . (15)
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Combining (14) and (15), we obtain the first part of the result:

E (ȳw̃ | Y) = Ȳ + o
(
n−1/2

v

)
.

To obtain the second part of the result, it suffices to observe that

var (ȳw | Y) = var (ȳw̃ | Y) + E [var (ȳw | sv,Y) | Y] . (16)

The result var (ȳw̃ | Y) ≤ var (ȳw | Y) is proven by noting that the second term on
the right-hand side of (16) cannot be negative.

B Proof of result (10)

Under the linear model (7), and from result (6) and Eq. (15), we have

E (ȳw | Y) = E (ȳw̃ | Y) = E

⎡

⎣N−1
∑

i∈sv

(
h�
i γ

)
yi | Y

⎤

⎦ = Ȳ + o
(
n−1/2

v

)
.

Under the linear model (7), we also have that

E (ȳŵ | Y) = E [E (ȳŵ | sv,Y) | Y] = E

⎡

⎣N−1
∑

i∈sv

(
h�
i γ

)
yi | Y

⎤

⎦ .

Combining the last two equations, we obtain: E (ȳŵ | Y) = Ȳ + o
(
n−1/2

v

)
.

Assuming wi given sv and Y are mutually independent (at least asymptotically), it
is also straightforward to show that

var (ȳw | Y) = var

⎡

⎣N−1
∑

i∈sv

(
h�
i γ

)
yi | Y

⎤

⎦ + σ 2

N 2 E

⎛

⎝
∑

i∈sv
y2i | Y

⎞

⎠ . (17)

and that

var (ȳŵ | Y) = var

⎡

⎣N−1
∑

i∈sv

(
h�
i γ

)
yi | Y

⎤

⎦ + σ 2

N 2 E

⎛

⎝
∑

i∈sv
yih�

i α̂ | Y
⎞

⎠ , (18)

where α̂ is given in (9). Combining (17) and (18), noting that ŷi = h�
i α̂ and rearranging

the terms yield:

var (ȳŵ | Y) = var (ȳw | Y) − σ 2

N 2 E

⎡

⎣
∑

i∈sv

(
yi − ŷi

)2 | Y
⎤

⎦ .
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