Mostrar el registro sencillo del ítem

dc.contributor.authorCuerda, Cristian
dc.contributor.authorZornoza, Alejandro
dc.contributor.authorGallud, José A.
dc.contributor.authorTesoriero, Ricardo
dc.contributor.authorRomero Ayuso, Dulce Nombre de Mari 
dc.date.accessioned2021-12-07T09:22:58Z
dc.date.available2021-12-07T09:22:58Z
dc.date.issued2021-11-22
dc.identifier.citationCuerda, C., Zornoza, A., Gallud, J.A. et al. Deep learning assisted cognitive diagnosis for the D-Riska application. Soft Comput (2021). [https://doi.org/10.1007/s00500-021-06510-w]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71910
dc.descriptionOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.es_ES
dc.description.abstractIn this article, we expose a system developed that extends the Acquired Brain Injury (ABI) diagnostic application known as D-Riska with an artificial intelligence module that supports the diagnosis of ABI enabling therapists to evaluate patients in an assisted way. The application is in charge of collecting the data of the diagnostic tests of the patients, and due to a multi-class Convolutional Neural Network classifier (CNN), it is capable of making predictions that facilitate the diagnosis and the final score obtained in the test by the patient. To find out the best solution to this problem, different classifiers are used to compare the performance of the proposed model based on various classification metrics. The proposed CNN classifier makes predictions with 93 % of Accuracy, 94 % of Precision, 91 %, of Recall and 92% of F1-Score.es_ES
dc.description.sponsorshipCRUE-CSICes_ES
dc.description.sponsorshipSpringer Naturees_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectAcquired brain injuryes_ES
dc.subjectCognitive testes_ES
dc.subjectDeep learninges_ES
dc.subjectConvolutional neural networkses_ES
dc.subjectD-Riskaes_ES
dc.titleDeep learning assisted cognitive diagnosis for the D-Riska applicationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00500-021-06510-w
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España