Afficher la notice abrégée

dc.contributor.authorCastro Martín, Luis 
dc.contributor.authorRueda García, María Del Mar 
dc.contributor.authorFerri García, Ramón 
dc.contributor.authorHernando Tamayo, César
dc.date.accessioned2021-11-23T10:11:54Z
dc.date.available2021-11-23T10:11:54Z
dc.date.issued2021-11-23
dc.identifier.citationCastro-Martín, L.; Rueda, M.d.M.; Ferri-García, R.; Hernando-Tamayo, C. On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures. Mathematics 2021, 9, 2991. https://doi.org/10.3390/math9232991es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71686
dc.description.abstractIn the last years, web surveys have established themselves as one of the main methods in empirical research. However, the effect of coverage and selection bias in such surveys has undercut their utility for statistical inference in finite populations. To compensate for these biases, researchers have employed a variety of statistical techniques to adjust nonprobability samples so that they more closely match the population. In this study, we test the potential of the XGBoost algorithm in the most important methods for estimation that integrate data from a probability survey and a nonprobability survey. At the same time, a comparison is made of the effectiveness of these methods for the elimination of biases. The results show that the four proposed estimators based on gradient boosting frameworks can improve survey representativity with respect to other classic prediction methods. The proposed methodology is also used to analyze a real nonprobability survey sample on the social effects of COVID-19.es_ES
dc.description.sponsorshipMinisterio de Economía y Competitividad of Spain [grantPID2019- 106861RB-I00]es_ES
dc.description.sponsorshipIMAG-Maria de Maeztu CEX2020-001105-M/AEI/10.13039/501100011033es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectNonprobability surveyses_ES
dc.subjectMachine learning techniqueses_ES
dc.subjectPropensity score adjustmentes_ES
dc.subjectSurvey samplinges_ES
dc.titleOn the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedureses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/math9232991
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España