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Abstract: In the last years, web surveys have established themselves as one of the main methods in
empirical research. However, the effect of coverage and selection bias in such surveys has undercut
their utility for statistical inference in finite populations. To compensate for these biases, researchers
have employed a variety of statistical techniques to adjust nonprobability samples so that they
more closely match the population. In this study, we test the potential of the XGBoost algorithm
in the most important methods for estimation that integrate data from a probability survey and a
nonprobability survey. At the same time, a comparison is made of the effectiveness of these methods
for the elimination of biases. The results show that the four proposed estimators based on gradient
boosting frameworks can improve survey representativity with respect to other classic prediction
methods. The proposed methodology is also used to analyze a real nonprobability survey sample on
the social effects of COVID-19.

Keywords: nonprobability surveys; machine learning techniques; propensity score adjustment;
survey sampling

1. Introduction

Survey sampling theory, since its foundation in the 20th century with the works
of Jerzy Neyman [1,2], has been the gold standard for applied research in the empirical
sciences. Its methods have been primarily developed for contexts where a probability
sampling is feasible; under this assumption, survey sampling methods allow us to ob-
tain reliable estimates from a sample of a population, with an associated measure of the
variability that arises from the randomness of the sample.

Traditional questionnaire administration modes, such as face-to-face or telephone
surveys, have met (to a large extent) the conditions that guarantee probability sampling for
a long time. However, in the last few years the winds of change have brought other data
sources into the picture in response to the growing issues of those traditional modes (such
as drops in response rates or increase of costs). The increasing prevalence of nonprobability
surveys, such as web panels, interception surveys or large volume datasets collected
automatically that are often used in big data (e.g., lists of tweets or transactions), has
brought positive aspects like reducing survey time and cost per respondent, as well as
enabling more possibilities for questionnaire design. On the other hand, collecting a
strict probability sample using such methods is largely difficult because of the frame
undercoverage that arises from drawing the sample from a subset of the target population
(such as internet users) and the fact that the respondents are self-selected for many of those
methods. These issues make methods for nonprobability samples even more important.

When using the aforementioned data sources for finite population inference, adjusting
for selection bias should be considered. Among the various techniques to remove bias
in web surveys, we could underline propensity score adjustment (PSA). This method,
originally developed for reducing selection bias in non-randomized clinical trials [3], is
commonly used for dealing with missing data [4], and was adapted to nonprobability
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surveys in the work of [5,6]. Among the alternatives, we could mention the statistical
matching method, which is also known as mass imputation in the literature, which was
developed in [7] as a technique to address selection bias in web surveys by means of
predictive modelling.

These methods are often used using logistic models (to estimate the propensity to
participate in the survey of each individual) and linear regressions (to predict the values
of the interest variable), which may entail several disadvantages for large populations in
comparison to modern prediction methods such as ML algorithms.

In recent decades, numerous machine learning (ML) methods have emerged that
have proven to be more suitable for regression and classification than linear regression
methods. Although there has been an exponential increase in the use of these techniques
in many areas [8–10], their application in the context of sampling in finite populations
has been limited. A model-assisted estimator based on a neural network with skip-layer
connections was developed in [11] . A design-based model-assisted estimator using KNN
(K-nearest neighbor method) was developed in [12,13]. Spline regression and random
forests in post-stratification were used in [14]. The effects of bagging on non-differentiable
survey estimators including sample distribution functions and quantile were invesigated
in [15].

Recently, ML algorithms have been considered in the literature for the treatment
of nonprobability samples. A simulation study using certain ML predictive algorithms
(decision trees, k-nearest neighbors, Naive Bayes, Random Forest and Gradient Boosting
Machine) is performed in [16]. Their findings showed that ML methods have the potential
to remove selection bias in nonprobability samples to a greater extent than logistic regres-
sion in some scenarios. This view had been previously supported by [17]. The use of linear
models and some ML algorithms in PSA to estimate propensities and in imputation for
statistical matching was compared in [18]. Other recent papers that use Regression Trees
and boosting algorithms to remove bias in web surveys are [19,20].

A common machine learning algorithm under the Gradient Boosting framework is
XGBoost [21]. The use of this algorithm is motivated by the promising results obtained
with boosting algorithms in general and Gradient Boosting Machines (GBM) in particular;
for instance, the simulation study from [16] showed that Gradient Boosting Machines can
lead to selection bias reductions in situations of high dimensionality, or where the selec-
tion mechanism is Missing At Random (MAR). Boosting algorithms have been applied in
propensity score weighting for non-randomized experiments, including Gradient Boosting
Machines [22–27], showing on average better results than conventional parametric regres-
sion models. Given its theoretical advantage over GBM, which could lead to even better
results in a broader range of situations, XGBoost will be used for this research to test its
adequacy for mitigating selection bias in volunteer samples and lay a baseline performance
result. We will apply this algorithm for several estimators based on different approaches.

The paper is organized as follows. In Section 2, the existing methods for correcting
selection bias in volunteer samples using a reference probability sample are described.
In Section 3, the XGBoost method is presented and its use for estimating population mean
in our context is proposed. The results from several simulation studies are presented in
Section 4. An application to a real survey is presented in Section 5. Finally, the findings
and their implications are discussed in Section 6.

2. Context

Let U denote a finite population of size N, U = {1, . . . , i, . . . , N}. Let sV be a conve-
nience (or volunteer) nonprobability sample of size sV . Let y be the variable of interest in
the survey estimation.

The population mean, Y, can be estimated with the naive estimator based on the
sample mean of y in sV :

Ŷ = ∑
i∈sV

yi
nV

(1)
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If the convenience sample sV suffers from selection bias, this estimator will provide
biased results. This can happen if there is an important fraction of the population with
zero chance of being included in the sample (coverage bias) and if there are significant
differences in the inclusion probabilities among the different members of the population
(selection bias) [28,29].

Let sR be a reference sample of size nR selected from U under a probability sampling
design (sR, pR) with πi = ∑sR3i pR(sR) (where sR denotes the samples which contain the
unit i) the first order inclusion probability for individual i, we denote by di = 1/πi the
design weights for the units in the reference sample. Let xi be the values presented by
individual i for a vector of covariates x. Those covariates are common to both samples,
while we only have measurements of the variable of interest y for the individuals in the
convenience sample.

In this context, propensity score adjustment (PSA) can be used to reduce the selection
bias that would affect the unweighted estimates. This approach aims to estimate the
propensity of an individual to be included in the nonprobability sample by combining
the data from both samples, sR and sV , and training a predictive model on the variable δ,
with δi = 1 if i ∈ sV and δi = 0 if i ∈ sR. PSA assumes that the selection mechanism of sV
is ignorable and follows a parametric model:

P(δi = 1|xi) = pi(x) =
1

e−(γ′xi) + 1
(2)

for some vector γ. The procedure is to estimate the parameter γ by using logistic regression
and transform the estimated propensities to weights by inverting them wlog

i = 1/ p̂i where
p̂i = p̂i(xi) = (e−(γ̂′xi) + 1)−1 is the estimated propensity for the individual i ∈ sV based
on logistic regression. Thus the inverse propensity score weighting estimator (IPSW) [30] is:

Ŷ IPSW =
1

∑i∈sV
wlog

i
∑

i∈sV

yiw
log
i (3)

Propensities can be transformed into weights using other procedures, such as stratify-
ing the vector of propensities to form groups of individuals with similar propensities and
assign all individuals in a group the same weight [6,31].

If the design weights are used in the computation of γ, the estimator Ŷ IPSW is valid
provided the participation rate is small, given that the optimization procedure leads to the
pseudologlikelihood function developed in [32] which provides an unbiased and consistent
estimator of the propensities except for an extra term that depends on the size of sV relative
to U, and therefore can be considered as negligible if U � sV . A modification of PSA is
the TrIPW estimator developed in [19], that uses a modified version of the Classification
And Regression Trees (CART) algorithm [33], and does not require the participation rate
to be small. Although IPSW and TrIPW can be considered PSA approaches, the method-
ology of the latter is slighty different, as it takes into account design weights in the tree
building by definition, while in the IPSW approach it is not required to use design weights.
The propensity for each individual i ∈ sV is estimated as:

p̃i
CART =

#(l(i) ∩ sV)

#(l(i))
(4)

where l(i) represents the terminal node of the CART algorithm trained on U in which
i-th individual of sV lies. The formula above represents the proportion of population
individuals that would be classified in the terminal node 1 and also belong to sV . Given
that U − sV is not available, the propensity described above has to be estimated from the
information contained in the available samples using a modified CART algorithm and
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estimating proportions by taking design weights into account to be used for estimating
population and subpopulation sizes as follows:

p̂i
CART =

#(l(i) ∩ sV)

#̂(l(i))
=

#(l(i) ∩ sV)

∑j∈l(i)∩sR

1
πj

(5)

where πj is the first order inclusion probability for individual j in sR. The equation above
substitutes the unknown number of individuals from the population that would fit in l(i)
by its estimated value through the sum of the sampling weights of individuals from sR that
belong to l(i). These values p̂i

CART are now used to construct a Hajek type estimator of
Y as:

ŶTrIPW =
1

∑i∈sV
wCART

i
∑

i∈sV

yiwCART
i (6)

where wCART
i = 1/ p̂i

CART . This non-parametric approach shows acceptable results under
non-linearity conditions [19].

In a similar way to PSA, propensity scores are used to measure the similarity between
the covariates of the probabilistic and nonprobability samples. The new approach is called
Kernel Weighting [34]. These propensity scores were made through the use of logistic
regression, as explained previously.

For j ∈ sR we compute the distance of its estimated propensity score from each i in
the nonprobability sample (whose result varies from −1 to 1) as:

d(xi, xj) = p̂i(xi)− p̂j(xj) (7)

Then, a zero-centered kernel function is applied to smooth distances. Thus, the pseu-
doweights can be calculated:

kij =
K
{

d(xi, xj)/h
}

∑j∈sV
K
{

d(xi, xj)/h
} (8)

where K(·) is the applied kernel function (i.e., Gaussian):

K
(
d(xi, xj); h

)
∝ exp

(
−

d(xi, xj)
2

2h2

)
(9)

and h is the bandwidth. To calculate the optimal bandwidth, Silverman’s method is
used [35]:

h = 0.9 min
(

σ̂,
IQR
1.34

)
n
−

1
5 (10)

where σ̂ is the square root of the variance, IQR is the interquartile range and n is the length
of the distances vector. Finally the KW weight is given by:

wi = ∑
j∈sR

kijdj (11)

and the KW estimator of the population mean is:

ŶKW =
1

∑i∈sV
wKW

i
∑

i∈sV

yiwKW
i . (12)
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Another variation of KW is Boosted Kernel Weighting. Its only difference is the usage
of machine learning instead of logistic regression to get the propensities [20]. These authors
use four ML methods: model-based recursive partitioning, conditional random forests,
gradient boosting machines and model-based boosting to estimate propensities and deduce
in their simulation study that boosting methods result in KW with lower bias in several
settings without increasing variance.

PSA is often used for reducing selection bias in nonprobability surveys, but empirical
evidence of its effectiveness is mixed. A study with four web panel surveys was devel-
oped in [36], showing that the reduction in bias is likely to be partial and unpredictable .
Alternative methods for selection bias adjustment are based in superpopulation models.
Statistical matching (SM) is an approach developed by [7] and applied to nonresponse
treatment in [37]. This method aims to predict y in the probability sample (where y has not
been measured) using covariates x and the volunteer sample sV to fit the models that will
be used to predict values of y in the reference sample. SM assumes that y is a realization of
a superpopulation random variable Y, which follows a functional relationship with the set
of covariates x such that:

yi = m(xi) + ei, i = 1, 2, . . . , N, (13)

It is often assumed that the relationship between y and x is linear, meaning that
m(xi) = βxi, the random vector e = (e1, . . . , eN)

′ is assumed to have zero mean and the
coefficients β can be estimated by the usual methods in linear regression such as Ordinary
Least Squares or maximum likelihood. The matching estimator is then given by:

ŶSM =
1

∑i∈sR
di

∑
sR

ŷidi (14)

where ŷi the imputed value of yi and di the design weight of the individual i in sR.
It remains unclear which of the two methods (PSA or SM) is more efficient, although a

recent experiment by [18] showed a higher efficiency of statistical matching.
Recently, [32] proposed a new doubly robust estimator based on the previous linear

model (13), and showed that this estimator can be conveniently used for inferences from
nonprobability samples. The estimator is defined as:

ŶDR =
1

∑i∈sR
di

∑
sR

ŷidi +
1

∑i∈sV
1/ p̂i(xi)

∑
i∈sV

(yi − ŷi)/ p̂i(xi) (15)

This estimator follows the idea of the model-assisted generalized difference estimator
given in [38] and has the property of being robust to modelling misspecifications either in
the propensity estimation or in the matching imputation.

Alternatively, a more direct method has been proposed in [39] to combine SM and PSA.
The main idea is to use PSA weights in the predictive models used in Statistical Matching,
given that those models use the nonprobability sample as training data. This is a feasible
strategy given that most machine learning algorithms allow the weighting of the training
data. For example, the previous linear model (13) can minimize a weighted Mean Square
Error instead. Let ŷti the value of yi imputed by a model trained that uses 1/ p̂i(xi), i ∈ sV
as training weights. The proposed estimator will be:

ŶWT =
1

∑i∈sR
di

∑
sR

ŷtidi. (16)

In the next section we introduce a powerful machine learning technique that can be
used both for predicting the unknown values in the probability sample (which can be
used to obtain the imputed values in the estimators described previously) and also for
calculating the propensity scores.
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3. XGBoost Estimators

We assume that covariates x have been measured on both samples, while the variable
of interest y has been measured only in the volunteer sample, sR.

We will use XGBoost to obtain the imputed values in the matching estimator. XGBoost
is a widely known state-of-the-art machine learning system for several problems. For ex-
ample, it was used in 17 out of 29 winning solutions published during 2015 at Kaggle,
a famous machine learning platform for hosting competitions [21].

It works as a decision tree ensemble. Decision trees set split points based on xi until
reaching a final estimation ŷi of yi.

As described in the original paper [21], when they work as an ensemble model the
final prediction is defined as follows:

ŷxgi = φ(xi) =
K

∑
k=1

fk(xi), fk ∈ F (17)

where K is the number of trees forming the ensemble and F = { f (x) = ωq(x)}; with
q : Rm → T representing the structure of each tree which, given xi, returns its corresponding
final node and ωi the score on the i-th final node. The final prediction is the sum of the
scores obtained.

The trees fk, k = 1, . . . , K, are built aiming to minimize the following regularized
objective function:

L(φ) = ∑
i

l(ŷxgi, yi) + ∑
k

Ω( fk) (18)

where the first term l is a differentiable convex function which measures the error of the
estimations. For example, when estimating a quantitative variable, the squared error can
be used:

l(ŷ, y) = (ŷ− y)2 (19)

The second term regularizes the function penalizing complex trees. It penalizes having
too many final nodes (T) and returning too high scores:

Ω( f ) = γT +
1
2

λ‖ω‖2 (20)

where γ and λ are hyperparameters which control how much is this regularization priori-
tized to control overfitting [40] over minimizing the error for the training set.

The objective function is minimized iteratively with the Gradient Tree Boosting
method [41]. For the t-th iteration, ft is added in order to minimize the following objective:

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
xgi + ft(xi)) + Ω( ft) (21)

where ŷ(t)xgi is the estimated value of y for the i-th unit in the t-th iteration. This objective is
optimized via second-order approximation [42]:

L(t) '
n

∑
i=1

[l(yi, ŷ(t−1)
xgi ) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω( ft) (22)

where gi = ∂
ŷ(t−1)

xgi
l(yi, ŷ(t−1)

xgi ) and hi = ∂2
ŷ(t−1)

xgi

l(yi, ŷ(t−1)
xgi ).
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In practice, it is impossible to evaluate every possible tree structure q. The loss
reduction caused by a potential split point is calculated instead as:

Lsplit =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ (23)

where IL and IR are the sets of units corresponding to the left and right side of the split,
and I = IL ∪ IR. Split points are added iteratively based on this formula.

XGBoost implements Gradient Tree Boosting with several techniques which improve
its efficiency and efficacy. These include shrinkage (in order to limit the influence of each
individual tree) and advanced strategies for finding split point candidates, among oth-
ers [21].

By imputing missing values in the target variable for individuals in the probability
sample with their corresponding predicted value, we propose the following SM estimator
for the population mean Y:

ŶXGM =
1

∑i∈sR
di

∑
sR

ŷxgidi, (24)

where ŷxgi the predicted value of yi.
Other possibility to make estimators is to consider the idea of generalized difference

estimator [43] where an additional term is added to the ŶXGM estimator that takes into
account the error made in the estimates given by the model from the nonprobabilistic
sample (since in this sample we have the true and the estimated values for y).

Following this idea we propose the estimator:

ŶXGD =
1

∑i∈sR
di

∑
sR

ŷxgidi +
1

∑i∈sV
1/ p̂i(xi)

∑
i∈sV

(yi − ŷxgi)/ p̂xgi(xi) (25)

where p̂i = (e−(γ̂′xi) + 1)−1. This estimator is similar to the the doubly robust estimator
by [32], but they use parametric regression models for estimating yi.

XGBoost also allows weighting the training data. First we estimate the propensities
by logistic regression. Then, the model is trained using the weights wlog

i = 1/ p̂i; i ∈ sV in
the objective function. Let ŷxgti be the value of yi imputed by said model. Finally, we make
the XGT-estimator:

ŶXGT =
1

∑i∈sR
di

∑
sR

ŷxgtidi. (26)

Finally, a new kernel weighting estimator ŶXKW can be considered, as detailed
in (12), but using XGBoost for estimating propensities. That is, the proposed estimator is
formulated as:

ŶXKW =
1

∑i∈sV
wXKW

i
∑

i∈sV

yiwXKW
i . (27)

where wXKW
i = ∑j∈sR

kWijdj and kWij are calculated as in (8) but the propensities pi are
estimated using the XGBoots method as

p̂iX = ϕ(zi) =
K

∑
k=1

gk(zi), gk ∈ G (28)

where G representing the structure of each tree and zi the covariates used for modelling the
propensities (that may or may not coincide with the variables used to predict the outcome
variable y).
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The proposed XGBoost estimators (24)–(27) are computationally similar, given that
the algorithm does the same work in all of them. However, the XGBoosted kernel weight-
ing variant will be computationally preferable when there are many variables to estimate
because only one model has to be trained in order to calculate the weights. Even though XG-
Boost models are more expensive to train than linear models, training time is insignificant
for a single model in any modern processor. However, the difference could be significant
when many models have to be trained. The efficiency of each method can be studied
by analyzing the variance of the resulting estimator; however, that variance cannot be
developed in simple form. Alternatively, resampling methods can be applied to each of the
proposed estimators to estimate the variance (see [44]).

3.1. Hyperparameter Optimization

The XGBoost algorithm contains several tuning hyperparameters which determine its
functioning for each specific case. Its default values may be used. However, poor results
may be obtained due to the fact that said default values are not suitable for some cases.
In order to determine its real potential, we will also consider a hyperparameter optimization
process for the matching estimator ŶXGM and for the Boosted Kernel Weighting estimator
ŶBKW . This will also determine how relevant these kind of optimizations can be.

The process will be carried out via the Tree-structured Parzen Estimator (TPE) al-
gorithm [45]. Each tested hyperparameters set will be validated calculating its Rooted
Mean Squared Error for several simulations in order to determine the optimal values. In a
real case scenario, simulations cannot be carried out and therefore this strategy should be
replaced with cross-validation techniques [46].

Among the wide variety of parameters considered by XGBoost, we have selected the
most important ones for the search space:

• Number of estimators ∈ [10, 400]: How many trees form the ensemble. The default
value is 100.

• Learning rate ∈ [0.01, 1]: How much weight shrinkage is applied after each boosting
step. The default value is 0.3.

• Maximum depth ∈ [1, 60]: How many splits can each tree contain. The default value
is 6.

• Minimum child weight ∈ [1, 6]: How much instance weight is needed in total to
consider a new partition. The default value is 1.

4. Simulation Study
4.1. Simulated Populations

Several simulation experiments are performed in order to demonstrate how much
XGBoost can improve the estimations obtained with classic logistic/linear regression.

The first experiment replicates the simulated populations used in the study by [47].
The populations and propensities proposed are replicated, but XGBoost is introduced as
the machine learning algorithm used for each estimator proposed. This way, its perfor-
mance can be compared with the results obtained using logistic/linear regression (the
algorithm used in the original paper). The methodological rationale behind the use of
this study is to explore the behavior of XGBoost in those situations where the relationship
between covariates and target variables is non-linear, and therefore cannot be represented
by linear regression if it is not explicitly stated by the practitioner when specifying the
model. XGBoost (and other Machine Learning algorithms) are able to represent those
non-linearities via boosted decision trees based on learning from data. On the other hand,
using artificial data allows us to control the selection mechanisms and the relationships
between variables, as well as assess their relevance in the final results. When using real
data, these relationships can only be drawn in a conjectural way, although the results might
be more representative of real world situations.
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Therefore, three finite populations are generated following these models:

ξ1 : yi = 1 + 2x1i + 2x2i + 2x3i + σaεi, i = 1, 2, ..., N; (29)

ξ2 : yi = 1 + 2x1i + 2x2i + 2x3i + 0.2x4
3i + σbεi, i = 1, 2, ..., N; (30)

ξ3 : yi = 1 + 2x1i + 2x2i + 2x3i + 0.5x4
3i + σcεi, i = 1, 2, ..., N; (31)

where N = 20,000, x1i = z1i, x2i = z2i + 0.3x1i and x3i = z3i + 0.3(x1i + x2i); with z1i ∼
Bernoulli(0.5), z2i ∼ Uni f orm(0, 2) and z3i ∼ N(0, 1). εi ∼ N(0, 1) is the error term,
controlled by σa, σb and σc. Their values are adjusted in order to set the correlation
coefficient, ρ, between y with and without the error term at some desired level.

The propensities πA
i for the nonprobabilistic samples are generated following these

three models:

q1 : log
{

πA
i /(1− πA

i )
}
= θa + 0.3x1i + 0.3x2i + 0.3x3i, i = 1, 2, . . . , N; (32)

q2 : log
{

πA
i /(1− πA

i )
}
= θb + 0.3x1i + 0.3x2i + 0.3x3i + 0.1x2

3i, i = 1, 2, . . . , N; (33)

q3 : log
{

πA
i /(1− πA

i )
}
= θc + 0.3x1i + 0.3x2i + 0.3x3i + 0.2x2

3i, i = 1, 2, . . . , N; (34)

where θa, θb and θc are set such that ∑N
i=1 πA

i = nV for each case, with nV the target
sample size.

The probabilistic samples are obtained using inclusion probabilities proportional to
zi = c− x2i, with c such that max zi/ min zi = 30.

Using the described probabilities, a nonprobabilistic sample sV of size nV = 500 and a
probabilistic sample sR of size nR = 1000 are repeatedly drawn from the chosen population.
The proposed estimators are applied with said samples so the metrics, relative bias (%RB)
and mean square error (MSE), are obtained as follows:

%RB =
1
B

B

∑
b=1

µ̂(b) − µy

µy
× 100, MSE =

1
B

B

∑
b=1

(
µ̂(b) − µy

)2
(35)

where µ̂(b) is the mean estimated from the b-th sample and B = 2000.
The estimators considered are: the unweighted sample mean (Ŷ), IPSW with logistic

regression (Ŷ IPSW), Tree-Based Inverse Propensity Weighted estimation(ŶTrIPW), Kernel
Weighting (ŶKW), Matching with linear regression (ŶSM), Doubly Robust with linear regres-
sion for Matching and logistic regression for PSA (ŶDR), Training with linear regression
for Matching and logistic regression for PSA (ŶWT), XGBoosted kernel weighting (ŶXKW),
Matching with XGBoost (ŶXGM), Doubly Robust with linear regression for PSA and XG-
Boost for Matching (ŶXGD) and Training with linear regression for PSA and XGBoost
for Matching (ŶXGT). For those using XGBoost, only its default hyperparameters are
considered in this simulation.

The results for every possible population/propensities combination, with different
values of the correlation coefficient ρ, can be consulted in Figures 1–6.
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Figure 1. MSE, simulated case, correlation coefficient: 0.3.
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Figure 2. MSE, simulated case, correlation coefficient: 0.6.
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Figure 3. MSE, simulated case, correlation coefficient: 0.9.
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Figure 4. Relative bias (%), simulated case, correlation coefficient: 0.3.
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Figure 5. Relative bias (%), simulated case, correlation coefficient: 0.6.
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Figure 6. Relative bias (%), simulated case, correlation coefficient: 0.9.
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Models ξ1 and q1 are linear models. Therefore, linear/logistic regression is theoret-
ically unbeatable for those models. However, it can be observed that XGBoost can also
effectively remove the bias in those cases. The difficulties of linear/logistic regression arise
as the non-linearity of the models is increased. XGBoost is, however, still able to learn the
model in those scenarios. The decrease in bias and MSE of the XGBoost technique with
respect to linear/logistic regression is very noticeable in the case of the ξ3 and q3 model,
and it is observed how this good behavior is accentuated as the correlation between the
variables increases.

That is not the case for the ŶTrIPW or ŶXKW estimators. They seem to be suffering
from overfitting [40]. Further analysis from simulations considering real populations and
hyperparameter optimization will determine if their performance can be fixed.

Regarding doubly robust estimators, again the high learning capacity of Matching
with XGBoost causes that combining it with PSA does not necessarily improves the results.
In practice, the complexity of real data models may change that fact.

4.2. Real Populations

Following the experiment described in the previous section, the study is repeated with
real populations. The same estimators are considered. Default XGBoost hyperparameters
are used for an initial simulation. The relative bias is kept as a metric but the mean squared
error is replaced by the relative rooted mean squared error (%RRMSE) in order to obtain
comparable results.

%RRMSE =

√√√√ 1
B

B

∑
b=1

(
µ̂(b) − µy

)2
/

µy × 100 (36)

Two datasets are used following two different sampling strategies for each one. In each
simulation run, three possibilities for sample sizes, nV = nR = 1000, nV = nR = 2000 and
nV = nR = 5000, are considered.

The first population, denoted as P1, corresponds to the Hotel Booking Demand
Dataset [48]. It includes the data of bookings for a resort hotel and a city hotel due to arrive
between the 1 July 2015 and 31 August 2017. In total, it has 119,390 bookings of which 34%
are from the resort hotel and 66% from the city hotel. For the first nonprobability sampling
strategy, denoted as S1, resort bookings have 10 times more probability of being chosen
than city bookings. For the second nonprobability sampling strategy, denoted as S2, city
bookings have five times more probability of being chosen than resort bookings. The target
variable is the mean number of weeknights (Friday included) which are booked. In order
to estimate it, a probability sample sR is also obtained via a simple random sampling.
The remaining variables included in the dataset are used as covariates, excluding the
reservation status and the reservation status date, with a total of 28 covariates.

The second population, denoted as P2, is the Adult Dataset [49]. It includes census
income information for 32,561 adult individuals from the 1994 Census database of the
United States. For the first nonprobability sampling strategy, denoted as S1, individuals
who make over $50K a year have double the probability of being chosen. For the second
nonprobability sampling strategy, denoted as S2, individuals who make over $50K per
year have a propensity to participate multiplied by Pr(a) = 2a2, where a is the individual’s
age. The target is estimating the proportion of individuals who make over $50K per year.
Therefore, in this case, the target variable in the dataset is binary instead of continuous. Also,
in this scenario, the propensities depend on the target variable itself and this dependance
may not even be linear. Every other variable in the dataset is used as covariate, for a total
of 14 covariates. The probabilistic samples are obtained via simple random sampling.

The bias and relative rooted mean squared error results for each case with each
estimator can be viewed in Tables 1 and 2 respectively.
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Table 1. Relative bias (%) for each real population case.

Ŷ Ŷ IPSW ŶTrIPW ŶKW ŶSM Ŷ DR ŶWT ŶXKW ŶXGM ŶXGD ŶXGT

P1S1 1000 18.9 5.5 11.1 3.7 4.5 4.6 4.5 0.2 3.5 3.5 3.3
P1S1 2000 18.9 5.5 10.9 4 4.9 4.9 4.8 −11.9 2.8 2.8 2.5
P1S1 5000 18.6 4.6 10.1 4.2 4.8 4.8 4.7 −7.5 2.2 2 1.7

P1S2 1000 −9.2 −4.1 −5.4 −2.1 −5 −4.1 −4.1 −13.4 −2.6 −2.5 −2.5
P1S2 2000 −9.2 −4.2 −5.5 −2 −4.9 −4.1 −3.9 −7.5 −1.9 −1.8 −1.8
P1S2 5000 −9.1 −3.9 −5.2 −2.4 −4.7 −3.8 −3.6 1.4 −1.4 −1.3 −1.3

P2S1 1000 60 34.4 37 33.5 33.2 33.2 30 8.9 25.9 25.8 24.8
P2S1 2000 58.7 33.3 36 33.1 30.8 30.5 29.2 −12 25 24.7 24
P2S1 5000 54.8 31.3 33.7 30.7 31.1 27.9 27.6 −11.8 23.4 23.2 22.8

P2S2 1000 78.3 34.8 39.8 33 34.9 33.8 31 −5.6 26.4 25.9 24.4
P2S2 2000 76.5 33.9 39.1 32.4 32.2 31.2 30.2 −31.1 25 24.9 23.6
P2S2 5000 71.1 31.7 36.6 30.3 30.6 28.5 28.2 −19.4 23.3 23 22.4

Table 2. Relative RMSE (%) for each real population case.

Ŷ Ŷ IPSW ŶTrIPW ŶKW ŶSM Ŷ DR ŶWT ŶXKW ŶXGM ŶXGD ŶXGT

P1S1 1000 19.1 6.3 11.7 5.4 5.6 5.5 5.4 17.4 4.7 4.7 4.6
P1S1 2000 18.9 5.9 11.2 4.9 5.4 5.3 5.3 20.6 3.6 3.6 3.4
P1S1 5000 18.7 8.6 10.3 4.4 5 5.6 4.9 8.8 2.5 2.5 2.2

P1S2 1000 9.5 5.7 5.9 5.9 5.9 5.3 5 20 3.9 3.9 3.9
P1S2 2000 9.3 4.8 6 4.2 5.3 4.7 4.4 19.5 2.8 2.7 2.7
P1S2 5000 9.2 4.2 5.4 3 4.8 4 3.8 11 1.9 1.8 1.8

P2S1 1000 60.3 35 37.6 34.2 33.8 33.9 30.7 77 26.9 26.7 25.7
P2S1 2000 58.9 33.5 36.3 33.4 31.1 30.8 29.5 39.6 25.4 25.1 24.4
P2S1 5000 54.9 31.4 33.8 30.9 31.8 28 27.7 15.8 23.5 23.3 22.9

P2S2 1000 78.5 35.4 40.4 33.7 35.4 34.3 31.6 69.4 27.2 26.8 25.3
P2S2 2000 76.6 34.2 39.4 32.7 32.5 31.5 30.5 40.2 25.4 25.4 24.1
P2S2 5000 71.1 31.8 36.7 30.4 30.9 28.7 28.3 20 23.5 23.2 22.6

Again, as it happened with the simulated data, a significant improvement in the
estimations can be observed when using XGBoost instead of linear or single tree regressors.
This improvement is more relevant now since the datasets are more complex and closer
to real scenarios. The results are also better, as more data is avaliable. In the majority of
cases, the Matching based variants obtain the best results. However, for some specific
cases, XGBoosted Kernel Weighting is better. This probably happens where the algo-
rithm is not overlearning. This assumption is confirmed by later simulations considering
hyperparameter optimization in which the methods always behave reliably.

Regarding doubly robust estimators, combining SM with PSA may yield slightly more
accurate estimations in these cases with XGBoost as well. This improvement can be more
noticeable if a more direct approach like ŶXGT is applied instead of a basic combination
like ŶXGD.

Some of these results may be improved by applying variable selection, specifically
those using linear of logistic regression. Tree based algorithms like XGBoost or CART apply
variable selection internally by themselves.

Finally, as explained in Section 3.1, hyperparameter optimization is also considered via
the Tree-structured Parzen Estimator (TPE) algorithm [45], as implemented in the software
package Optuna [50]. The TPE algorithm is able to quickly discard inappropiate settings, so
a wide search space may be specified. We have run simulations for the boosted matching
estimator ŶXGM and for the XGBoosted kernel weighting estimator ŶXKW . The sample size
for this scenario is 1000 since it is the hardest case. Each hyperparameter set evaluated by
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the algorithm is validated measuring its Mean Squared Error among 50 sub-simulations.
Once the best values for each specific case are selected with this procedure, they are used
for a new simulation in the same conditions as the one without optimization. Every real
population and sampling strategy is considered.

The results can be observed in Tables 3 and 4. The optimization considerably improves
the estimations. In some cases, this improvement is so significant that the method which
was the worst one without optimization is now the best alternative. Therefore, the impor-
tance of applying this kind of procedure is confirmed in order to obtain reliable results,
especially for those estimators that have shown to suffer greatly from overlearning.

Table 3. Relative bias (%) for each optimized case.

Non Optimized Optimized

Ŷ ŶXKW ŶXGM ŶXKW ŶXGM

P1S1 1000 18.9 0.2 3.5 0.4 1.2
P1S2 1000 −9.2 −13.4 −2.6 −1.1 −1.5
P2S1 1000 60.0 8.9 25.9 5.2 25.1
P2S2 1000 78.3 −5.6 26.4 2.0 25.5

Table 4. Relative RMSE (%) for each optimized case.

Non Optimized Optimized

Ŷ ŶXKW ŶXGM ŶXKW ŶXGM

P1S1 1000 19.1 17.4 4.7 4.0 3.2
P1S2 1000 9.5 20.0 3.9 4.1 3.4
P2S1 1000 60.3 77.0 26.9 10.6 26.2
P2S2 1000 78.5 69.4 27.2 7.8 26.5

5. Application to a Survey on Social Effects of COVID-19 in Spain

This section illustrates the estimation procedures that we have empirically described in a
web survey in which respondents were selected by targeting Internet ads at specific profiles.

ESPACOV [51] is a survey that was conducted in Spain in the fourth week of the strict
lockdown imposed on 14 March 2020, and provides information on the living conditions
of the population, acquired habits, health and consequences of the state of alarm and home
confinement. ESPACOV was run by the Institute for Advanced Social Studies (IESA) and
the sample was collected via paid advertisements on Google Ads and Facebook/Instagram
(nonprobability sampling). A total of 1881 interviews were completed.

Table 5 compares unweighted sample distributions by age group and sex and by
education level with Spanish population data [52,53].

Due to coverage and participation bias, people with tertiary education are over-
represented, and less educated people vastly under-represented. There are also representa-
tion issues in the different age groups for each sex.

We have considered the April 2020 Barometer of the Spanish Center for Sociological
Research [54] as the source of auxiliary information. The barometers are probability surveys
carried out on a monthly basis, and their main objective is to measure Spanish public
opinion at that time. They involve interviews with approximately 2500 randomly-chosen
people from all over the country, with extensive social and demographic information on
them being gathered for analysis as well as their opinions. The survey follows a multi-stage,
stratified cluster sampling, with selection of the primary sampling units (municipalities)
and of the secondary units (census sections) randomly with proportional allocation, and of
the last units (individuals) by random routes and sex and age quotas. The barometer
dataset is often viewed as a reliable source of official statistics and contains a number of
common variables with the ESPACOV dataset. More precisely, these include gender, age,
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province, municipality size, education level, working status and self-positioning in the
ideological scale (10-point Likert, where 1 represents “far left” and 10 “far right”).

Table 5. Obtained sample distributions by sex and age group and by education level, and comparison
with population parameters.

ESPACOV Sample Spanish Population

Age group
Men
18–29 9.7 7.6
30–44 9.3 12.9
45–64 11.3 17.6
65+ 16.1 10.3

Women
18–29 10.6 7.3
30–44 13.7 12.9
45–64 17.9 17.9
65+ 11.6 13.5

Education
Obligatory or less 16.2 45.6

Secondary 33.8 21.7
Tertiary 49.6 32.7

We apply the proposed methods to estimate the population mean of the variable “Rate
the government action to control the pandemic, from 0 to 10”. The values of the estimators
Ŷ IPSW , ŶTrIPW , ŶKW , ŶSM, ŶDR, ŶWT , ŶXKW , ŶXGM, ŶXGD and ŶXGT are computed for
each variable. The unadjusted simple sample mean Ŷ from the nonprobability sample is
also included. Results from using the common set of covariates which are available in both
datasets are presented in Table 6.

Table 6. Estimates of the population mean of the variable measuring the rating (1–10) of the Spanish
government action to control the COVID-19 pandemic.

Estimator Mean S. Deviation

Ŷ 5.52 0.08

Ŷ IPSW 5.04 0.10

ŶTrIPW 5.13 0.09

ŶKW 4.95 0.12

ŶSM 5.18 0.09

ŶDR 5.21 0.09

ŶWT 5.38 0.09

ŶXKW 5.33 0.72

ŶXGM 4.91 0.10

ŶXGD 4.92 0.10

ŶXGT 4.89 0.09

The results generally show that the application of bias correction techniques provides
an important shift (towards a lower mean rate) with respect to the unweighted estimate,
especially for those which were the most reliable ones during the simulations (ŶXGM, ŶXGD

and ŶXGT). Standard deviations were estimated via bootstraping [44]. 2000 resamples with
replacement are obtained in order to calculate the deviation for each method. They show a
small and expectable increase in variance from the unweighted case except for the ŶXKW
estimator. As seen in the simulations, this behavior is to be expected and should be solved
via hyperparameter tuning.



Mathematics 2021, 9, 2991 20 of 23

However, the chosen variable is closely related to the ideological scale covariate. We
also apply the methods to estimate the population means of the variables, rating, from 1
to 5, the confidence in the following groups/institutions to manage the current health
crisis: health workers, the armed forces, the police, the Spanish government and scientists.
The results are presented in Table 7. They show that the differences are not as significant
when the target variables are not related to the covariates used.

Table 7. Estimates of the population means of the variables measuring the rating (1–5) of the confidence in different
groups/institutions to manage the current health crisis.

Variable Ŷ Ŷ IPSW ŶTrIPW ŶKW ŶSM Ŷ DR ŶWT ŶXKW ŶXGM ŶXGD ŶXGT

Health workers 4.48 4.41 4.45 4.4 4.45 4.43 4.43 4.39 4.44 4.43 4.44
Armed forces 4.01 3.99 4.12 3.99 3.99 3.97 3.92 4.1 4.03 4.03 4.03

Police 4.04 4.05 4.14 4.07 4.05 4.04 4 3.92 4.07 4.07 4.04
Spanish government 2.94 2.7 2.77 2.68 2.76 2.78 2.87 2.55 2.61 2.62 2.62

Scientists 4.18 4.12 4.11 4.1 4.13 4.14 4.18 3.95 4.03 4.03 4.04

6. Conclusions

A long and ongoing literature is concerned with the evaluation of selection bias in
web surveys. Propensity scorse and matching estimators based on linear models are the
established workhorses in this literature. The emerging literature in statistical learning
might help to increase the precision of the estimates obtained by these methods.

Although machine learning methods have many well-documented advantages in
prediction and classification, it is not obvious that using them for propensity scores and
matching estimation in a nonprobability framework will reduce the bias in the estimation
of parameters. In this work we present four different methods to estimate parameters
based on the use of an important ML technique, the XGBoots method, to predict the values
of the target variable in the probability sample and also to determine the propensities of
participating in the nonprobability sample.

Our work contributes to the literature in evaluating the performance of classical and
machine learning based PSA estimators, matching estimators as well as other methods of
estimation from web survey data that are more innovative.

To be as close as possible to other recent estimation works in nonprobability surveys,
we have replicated the experiment carried out by [47]. When comparing results from
both simulations, we observe that estimators involving XGBoost provide better results
overall in certain non-linear situations in comparison to the case where linear models are
used. These results are relevant considering that, in practice, models will rarely be linear.
In fact, they will likely be much more complex than the ones considered in this simulation.
For this reason, we compare the different estimators in two real datasets. We compared
performance of XGBoost to a classical regression approach, with the former providing
good results in terms of bias and Mean Square Error reduction.

Our findings are mixed. Our evidence suggests the usage of XGBoost is more powerful
at removing selection bias in nonprobability samples than traditional linear regression mod-
els in scenarios where the propensity model is not linear and the auxiliary variables used
for adjustments are related to both the propensity and the variable of interest. In addition,
the simulations also show the efficiency of the use of recent training techniques like [34,39]
compared to the alternatives of PSA, matching, and double robust [32] techniques.

However, these results can also be unreliable when the algorithms suffer from over-
fitting. Hyperparameter optimization has shown to be highly effective at controlling this
issue. These kind of procedures are therefore important when producing estimations. We
will look further into this matter in future works.

The proposed method is also used to analyze a nonprobability survey sample on
the social effects of COVID-19. The results of this application show that selection bias
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correction techniques have the potential to provide substantial changes in the estimates of
population means in nonprobability samples.

In conclusion, the improved learning capacity of XGBoost is capable of significantly
reducing bias and MSE in certain scenarios according to our simulations, but it is important
to explore its limits with real use cases. Generally speaking, our results illustrate several
methods to do inference with nonprobability samples and highlight the importance and
usefulness of auxiliary information from probability survey samples. Propensity Score
Adjustment and model-based methods are recommended when the sample can be subject to
strong selection bias. XGBoost can yield more accurate predictions when the data behavior
is more complex, which typically occurs in situations with high dimensionality. Those are
the scenarios where we could particularly benefit the most from Xgboost, although it is
suitable for most of the situations.
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