Mostrar el registro sencillo del ítem
Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module
dc.contributor.author | Chmurski, Mateusz | |
dc.contributor.author | Mauro, Gianfranco | |
dc.contributor.author | Santra, Avik | |
dc.contributor.author | Zubert, Mariusz | |
dc.contributor.author | Dagasan, Gökberk | |
dc.date.accessioned | 2021-11-09T11:24:59Z | |
dc.date.available | 2021-11-09T11:24:59Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Chmurski, M.; Mauro, G.; Santra, A.; Zubert, M.; Dagasan, G. Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module. Sensors 2021, 21, 7298. https:// doi.org/10.3390/s21217298 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/71388 | |
dc.description.abstract | The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the deployment of such systems is often not performed in resource-constrained contexts. Inspired by the MobileNetV1 deep learning network, this paper presents a novel hand gesture recognition system based on frequency-modulated continuous wave (FMCW) radar, exhibiting a higher recognition accuracy in comparison to the state-of-the-art systems. First of all, the paper introduces a method to simplify radar preprocessing while preserving the main information of the performed gestures. Then, a deep neural classifier with the novel Depthwise Expansion Module based on the depthwise separable convolutions is presented. The introduced classifier is optimized and deployed on the Coral Edge TPU board. The system defines and adopts eight different hand gestures performed by five users, offering a classification accuracy of 98.13% while operating in a low-power and resource-constrained environment. | es_ES |
dc.description.sponsorship | Electronic Components and Systems for European Leadership Joint Undertaking under grant agreement No. 826655 (Tempo). | es_ES |
dc.description.sponsorship | European Union’s Horizon 2020 research and innovation programme and Belgium, France, Germany, Switzerland, and the Netherlands | es_ES |
dc.description.sponsorship | Lodz University of Technology. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Edge computing | es_ES |
dc.subject | Edge TPU | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Quantization | es_ES |
dc.subject | FMCW | es_ES |
dc.subject | Radar | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Neural networks | es_ES |
dc.title | Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/s21217298 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
DETC - Artículos
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.