
sensors

Article

Highly-Optimized Radar-Based Gesture Recognition System
with Depthwise Expansion Module

Mateusz Chmurski 1,2,* , Gianfranco Mauro 1,3 , Avik Santra 1 , Mariusz Zubert 1 and Gökberk Dagasan 1

����������
�������

Citation: Chmurski, M.; Mauro, G.;

Santra, A.; Zubert, M.; Dagasan, G.

Highly-Optimized Radar-Based

Gesture Recognition System with

Depthwise Expansion Module.

Sensors 2021, 21, 7298. https://

doi.org/10.3390/s21217298

Academic Editor: Youfan Hu

Received: 14 September 2021

Accepted: 26 October 2021

Published: 2 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Infineon Technologies AG, 85579 Neubiberg, Germany; Gianfranco.mauro@infineon.com (G.M.);
avik.santra@infineon.com (A.S.); mariusz.zubert@p.lodz.pl (M.Z.); goekberk.dagasan@infineon.com (G.D.)

2 Department of Microelectronics and Computer Science, Lodz University of Technology, 90924 Lodz, Poland
3 Department of Electronic and Computer Technology, University of Granada, Avenida de Fuente Nueva s/n,

18071 Granada, Spain
* Correspondence: mateusz.chmurski@infineon.com

Abstract: The increasing integration of technology in our daily lives demands the development of
more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI
strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations
on the operating environment. Further, the deployment of such systems is often not performed
in resource-constrained contexts. Inspired by the MobileNetV1 deep learning network, this paper
presents a novel hand gesture recognition system based on frequency-modulated continuous wave
(FMCW) radar, exhibiting a higher recognition accuracy in comparison to the state-of-the-art systems.
First of all, the paper introduces a method to simplify radar preprocessing while preserving the main
information of the performed gestures. Then, a deep neural classifier with the novel Depthwise
Expansion Module based on the depthwise separable convolutions is presented. The introduced
classifier is optimized and deployed on the Coral Edge TPU board. The system defines and adopts
eight different hand gestures performed by five users, offering a classification accuracy of 98.13%
while operating in a low-power and resource-constrained environment.

Keywords: edge computing; Edge TPU; optimization; quantization; FMCW; radar; deep learning;
neural networks

1. Introduction

In recent years, computing technology has become an intrinsic part of our daily lives,
and automation is becoming inevitable [1]. As a result, the existing HCI methods, such as
keyboard and mouse, are being replaced by more intuitive solutions, e.g., hand gesture
recognition systems [2,3]. Conventional HCI approaches mainly employ optical sensors
(e.g., RGB and ToF cameras), speech recognizing sensors, and wearable devices [4–15].
Optical sensors are being commonly used for motion sensing and gesture recognition.
Optical-based gesture recognition frameworks are highly accurate but are, in general,
environment dependent [15,16]. In such systems, lightning conditions negatively affect
the overall system performance. Privacy concern is another downside of camera-based
gesture recognition. Speech-based HCI may provide an interactive environment. However,
the tonal and physical variations, e.g., background noise, drastically influence the overall
system accuracy [11–13,17]. To deal with these problems, wearable devices have been
proposed to improve the overall system’s performance [18,19]. The need to wear a device all
the time may not be an ideal solution for many users. Unlike optical sensors and wearable
devices, radar-based gesture recognition techniques may overcome those limitations [20].
Radar sensors are not affected by variable lighting conditions and further, when adequately
employed, do not lead to privacy concerns. In addition, radars can provide a touchless
environment for capturing gestures, as a result, users do not have to wear additional
hardware [20,21].

Sensors 2021, 21, 7298. https://doi.org/10.3390/s21217298 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5442-4744
https://orcid.org/0000-0003-3204-1555
https://orcid.org/0000-0002-8156-3387
https://doi.org/10.3390/s21217298
https://doi.org/10.3390/s21217298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217298
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217298?type=check_update&version=2

Sensors 2021, 21, 7298 2 of 28

Another concern of the contemporary HCI frameworks is their power [22–26]. The typical
operation of HCI frameworks is based on the analysis of the spatial–temporal relations
between consecutive frames utilizing the deep learning methods, e.g., 3D convolutional
neural networks (CNN3D), long short-term memory (LSTM), and Recurrent Neural Net-
works (RNN) [27–30]. This analysis is a computationally complex task, which prevents
deployment on resource-constrained devices [23–26,31–39].

In recent years, researches carried out by numerous teams in R&D centers set out
the path, which led to the development of such topologies as AlexNet [40], VGGNet [41],
and ResNet [42]. These topologies achieved tremendous success in the field of com-
puter vision. They can learn the deep representation of the data and solve sophisticated
tasks [43,44]. However, the high accuracy achieved by the deep learning models comes at
the expense of increased computational and memory requirements for both the training
and inference phases. Training the deep learning model is memory and computationally ex-
pensive due to the potentially high dimensionality of the input data (e.g., a high-resolution
image) and the millions of computations that need to be performed. High resource con-
sumption is the main bottleneck of the deep learning methods, especially when the ap-
plication aims to deploy computationally complex algorithms on the less powerful edge
computing device [45].

The latest developments in deep learning are leading the research focus towards the
development of optimization methods and the deployment on edge devices. According
to Ericsson [46], 45% of global internet congestion in 2021 is going to be produced by IoT
(Internet of Things) devices, which confirms the need for in-depth research in this direction.
The fundamental principle of edge computing is shifting the computation and commu-
nication resources from the cloud to the edge of networks [47], to avoid communication
latency, provide a privacy protection capability, and enable a faster response to the end
users. Therefore, the necessity to optimize the deep learning models for the deployment on
the edge of the network is a relevant aspect to improve overall system performance [48].

Neural network optimization methods, including both architectural design and post-
training adaptations, enable developers to transform complex models into streamlined
implementations [49,50]. Architectural optimization methods are often conceived for the
deployment on resource-constrained hardware. They are realized by replacing the tradi-
tional convolutions with depthwise separable convolutions, squeezing the output of the
convolutional layer using 1× 1 convolution, or splitting the kernels into horizontal and ver-
tical components, as in the case of spatially separable convolution [51,52]. These strategies
have been used in several renowned topologies such as MobileNetV1 [51], SqueezeNet [53],
MixNet [54], and GoogleLeNet [55]. Other optimization methods involve, e.g., hyperpa-
rameter configuration [56] and automatic architecture search [57]. Post-training model
adaptations involve pruning [58–60], quantization [61–63], and format optimization.

Another important aspect lies in the input data structure, e.g., high-dimensional images,
which directly affect the number of computations and the required memory allocation.

Recent radar-based gesture recognition classifiers are linear structures built by stacking
the convolutional layers or using recurrent structures, thereby increasing the algorithm’s
model size, latency, and computational complexity. However, researchers have never
paid attention to applying more advanced topologies with lightweight building blocks
on radar data. Andrew et al. [51] present the class of efficient models called MobileNets
for mobile and embedded vision applications. This work has introduced the concept of
depthwise-separable convolutions, which is a form of factorized operation that separates
a standard convolution kernel into depthwise and 1 × 1 pointwise convolution kernels.
In this algorithm, the depthwise convolution applies a single convolutional filter to each
input channel; then, pointwise convolution uses a 1× 1 convolution to combine the outputs
of the depthwise convolution.

Specific techniques for the reduction of network size are shrinking, factorizing, or com-
pressing the pretrained networks [64,65]. Another commonly employed method is distilla-
tion [66], which makes use of one or more large networks to teach a smaller network how

Sensors 2021, 21, 7298 3 of 28

to achieve comparable results. Another approach, introduced in the second generation of
MobileNet, relies on applying the residual connections between consecutive layers. Rather
than simply stacking the layers linearly, MobileNetV2 employs a novel building block
known as inverted residuals with a linear bottleneck [52]. This module takes as input
a low-dimensional compressed representation of data which is first expanded to high
dimension and filtered with a lightweight depthwise convolution. The extracted features
are then projected back to a low-dimensional representation with a linear convolution.
The proposed module is suitable for edge devices, decreasing the number of parameters
and memory footprint needed during the inference time. MobileNets have found several
applications, particularly in image classification, object detection, and semantic segmen-
tation. This paper aims to design the dedicated topology for hand gesture recognition
based on the MobileNetV1 architecture employing the ideas coming from MobileNetV2,
i.e., increasing and decreasing the number of feature maps.

Inspired by the extensive usage of MobileNet architectures in problems related to
image classification, this work presents a dedicated topology within a novel deep learning
module—Depthwise Expansion Module. The proposed solution utilizes the depthwise con-
volutions, followed by the standard CNN2D performing a feature embedding. The depth
of the topology is regulated by α parameter, where α ∈ {0.25, 0.50, 0.75, 1.00}. The system
classifies the FMCW radar signal representing eight gestures. The main objective is to
obtain higher recognition accuracy than state-of-the-art frameworks for radars, by simul-
taneously reducing the number of parameters, model size, and inference time. The main
modifications compared to the original MobileNetV1 implementation include the replace-
ment of convolutional layers by linearly increasing the number of feature maps through
the Depthwise Expansion Module and the usage of fully connected layers in the place of
the global average pooling layer. Moreover, we have adapted the size of the input tensor to
our data and obtained higher recognition accuracy than the state-of-the-art frameworks.
In the proposed framework, the signal from the FMCW radar has been transformed into
the compressed representation to avoid the usage of ineffective neural network operators.
The gesture vocabulary comprises eight gestures. The data collection setup consists of
Raspberry Pi4, tripod, and an Infineon BGT60TR13C radar sensor, while the inference setup
is built of Coral Edge TPU, tripod, and an Infineon BGT60TR13C radar board. The acquired
samples of each gesture have been preprocessed and then transformed into a 3D tensor,
including the range time, velocity time and azimuth time maps. After data preprocessing,
the model has been trained, optimized, and deployed on the Coral Edge TPU board.

The main contributions of this paper are as follows:

1. We present a novel building block—Depthwise Expansion Module. To the best of
our knowledge, this type of building block has never been proposed in the field of
radar-based gesture recognition.

2. We deploy and test our algorithm on Edge TPU, proposing the 8-bit algorithm im-
plementation. As far as we are aware, we propose the first radar-based gesture
recognition classifier, which is optimized and deployed on the Coral Edge TPU board.

3. We propose a signal processing pipeline that allows a compressed data representation
of the FMCW radar signal.

2. Related Works

In the first part of this chapter, we analyze the gesture recognition methods based on
radar. In the next part, we focus on gesture techniques based on alternative modalities,
i.e., RGB, depth, and infrared sensors.

In this work, we use the frequency-modulated continuous wave (FMCW) radar sen-
sor manufactured by Infineon AG. The FMCW modulation technique has found many
applications, e.g., people counting [67,68], vital sign detection [69,70], and gesture recog-
nition [20]. Recently, the FMCW radars are also finding applications in the automotive
industry [71–73]. High-end cars already employ radars in the context of parking assistance

Sensors 2021, 21, 7298 4 of 28

and lane departure warnings. Currently, there is growing interest in applying touchless
sensors in many devices.

An algorithm called Long Recurrent All Convolutional Neural Network (LRACNN)
employing FMCW radar data has been proposed by Hazra et al. [27] with the aim of
hand gesture recognition. The algorithm utilizes a time-distributed layer wrapper and
the same set of convolutional layers at each input time step. The feature vector, extracted
by the time-distributed layer, is fed to an LSTM layer for the temporal feature modeling.
The extracted features are then input into a fully connected layer for final classification
and marked prediction accuracy of 94.34% is achieved. The proposed algorithm employs a
high amount of resources, and therefore could not be supported by most edge computing
devices. Consequently, the algorithm would not be deployable on highly-constrained
devices such as Intel Neural Compute Stick 2 (NCS 2) or Coral Edge TPU.

Zhang et al. [74] presented a hand gesture recognition methodology based on the
CNN3D and LSTM layers. The CNN3D is used for spatial–temporal feature extraction
while the LSTM is employed for the global temporal feature modeling. This method
exhibits a satisfactory recognition capability of 96.0%. However, the memory footprint and
the number of computations increase by the combination of CNN3D with LSTM, leading
to a solution hardly deployable on resource-constrained hardware.

Ahmed et al. [75] propose a hand gesture recognition system that uses an impulse
radio ultra-wideband (IR-UWB) radar and a classifier based on nine inception modules.
The results of this work exhibit higher classification accuracy than most of the state-of-the-
art solutions. However, the complex signal processing scheme and intricate structure of
the classifier imply high resource consumption.

Hazra et al. [28] introduced a hand gesture recognition classifier based on CNN3D
feature embedding. This work matches CNN3D with triplet loss to learn the embedded
feature vectors. The extracted features are the input of a k-NN (k-Nearest Neighbour)
algorithm for the final inference. This approach achieves good classification accuracy, while
it exhibits similar constraints to the ones mentioned above.

Molchanov et al. [76] introduced a radar-based gesture sensing system that employs
a specific signal processing methodology for the generation of the range-Doppler maps
(RDMs) and angle maps. The angle information is used to synchronize the radar with
the ToF camera in the perspective of a multisensor system for automotive applications.
A dedicated CNN3D classifier achieves satisfactory classification accuracy. However,
the proposed signal processing scheme and CNN3D classifier are huge limitations for
resource-constrained edge deployment.

Lien et al. [77] have taken the initial steps to investigate the radar as a new gesture
sensing modality. This work introduces the whole gesture processing pipeline (i.e., data col-
lection, digital signal preprocessing, signal transformations, feature extraction, and training
the classifier). The pipeline conveys a low-dimensional features solution for the imple-
mentation of a possibly simplified prediction through Random Forest Classifier (RFC).
The proposed approach has been tested on two energy-efficient platforms, i.e., Raspberry
Pi2 and Qualcomm Snapdragon 400.

Chmurski et al. [78] paved the path for deploying a radar-based gesture recognition
system on a resource-constrained device such as Raspberry Pi. In this work, an optimized
signal processing pipeline using continuous wavelet transform (CWT) maps is presented.
The model topology is based on a time-distributed layer wrapper that applies the same
set of convolutional layers to each timestamp, achieving a good classification accuracy
of 95.05%. However, the proposed signal processing and classifier cause high resource
consumption as end-to-end system latency is around 1 s, not enabling real-time system
operation. In [79], the previously proposed family of gesture recognition classifiers is
optimized and deployed on the Intel Neural Compute Stick 2 (Intel NCS 2). This work
forms the foundation of further research in this direction.

The alternative approaches for gesture recognition include the usage of different
sensor modalities. In [23], D’Eusanio et al. propose the transformer-based neural network

Sensors 2021, 21, 7298 5 of 28

with a self-attention mechanism, weighting the importance of each part of the input data.
The proposed classifier is built from the ResNet-18-base visual feature extractor. In the
next step, the extracted features are processed by the temporal feature analyzer, and finally,
the classification is performed. The proposed classifier has been tested on two widely-
known gesture recognition datasets, i.e., Nvidia Dynamic Hand Gesture dataset [24] and
Briareo dataset [80], with different data modalities, i.e., RGB, depth, infrared, and normals.
In the best case, the proposed algorithm achieves good classification results, i.e., 87.6%
and 97.2% for the Nvidia and Briareo datasets, respectively. However, it exhibits some
limitations concerning the deployment on resource-constrained devices, i.e., in the case
of four data modalities (RGB, depth, infrared, and normals) the classifier has 97.2 M
parameters, and it requires 5.3 GB of VRAM memory.

Another approach has been proposed by Molchanov et al. [24] who propose an
approach using a Recurrent 3D Convolutional Neural Network (R3DCNN). The proposed
classifier has been trained and tested on the dataset, which has been collected by multiple
sensors (i.e., SoftKinetic DS325 and DUO 3D) in the car simulator with both bright and
artificial lighting. The SoftKinetic DS325 sensor enabled the acquisition of front-view color
and depth videos. Additionally, the dense optical flow has been computed through the
color videos, which allowed the acquisition of additional information. The DUO-3D sensor
enabled the further acquisition of a pair of stereo IR-streams, which have been used to
compute the IR-disparity map. The proposed approach has been tested on various data
modalities, achieving 83.8% accuracy, when all data modalities have been used. Moreover,
the proposed approach has been evaluated on two publicly available datasets, i.e., SKIG [81]
and ChaLearn 2014 [82], achieving 98.6% and 98.2% accuracy, respectively. The proposed
approach presents promising results; however, a 3D convolution is not currently supported
by resource-constrained devices, e.g., Edge TPU and ARM microcontrollers.

Another interesting work related to the design of a highly performant classifier is [25].
This research does not directly deal with the problem of gesture recognition, but with the
more general task of action recognition. This work proposes a novel classifier called Two-
Stream Inflated 3D ConvNets (I3D). As the name implies, this topology builds upon state-of-
the-art image classification architectures but inflates their filters and pooling kernels into a
3D structure. The proposed classifier has been tested against well-known action recognition
datasets, thereby achieving 98.0% accuracy in the case of the UCF-101 dataset [83] and
80.9% accuracy in the case of the HMDB-51 dataset [84]. This work exhibits similar
limitations to [24], namely a 3D convolution is not currently supported by devices with
limited resources.

D’Eusanio et al. [26] propose a gesture recognition classifier based on Dense-161
architecture. The proposed system has been designed for the challenging automotive
context, aiming at reducing the driver’s distraction during the driving activity. In this
study [26], the proposed algorithm has been tested against two well-known datasets, i.e., the
Briareo [80] and the Nvidia Dynamic Hand Gesture dataset [24], referred to as NVGestures.
In the case of the Briareo dataset, the classifier has been tested on single data modalities and
combinations of data modalities, i.e., RGB, infrared, and depth, thereby achieving in the
best case 92% accuracy. With regards to the NVGestures dataset, the proposed classifier has
been tested on single data modalities, i.e., RGB and depth, achieving in the best case 76.1%
accuracy. The presented topology has 28 M parameters and requires 1 GB of GPU memory,
in the unimodal setting. In the multimodal setting, the proposed model has about 56 M
parameters and requires 2.7 GB of GPU memory. While the proposed approach presents
an impressive performance, the hardware requirements do not allow the deployment on
resource-constrained devices.

Another study proposing the FMCW radar-based gesture recognition system has
been carried out by Wang et al. [85]. In this work, a method for continuous hand gesture
recognition using an FMCW radar is proposed. First of all the 2-Dimensional fast Fourier
transform (2D-FFT) is adopted to estimate the range and Doppler parameters. Then,
the Multiple Signal Classification (MUSIC) algorithm is applied to estimate the angle of

Sensors 2021, 21, 7298 6 of 28

arrival of the hand towards the radar. A gesture detection method based upon the decision
threshold is then used. Finally, the preprocessed gesture is used as input for the Fusion
Dynamic Time Wrapping (FDTW) for classification. The proposed approach achieves
95.83% accuracy.

Another work dealing with radar-based gesture recognition has been proposed by
Wang et al. [86]. This study concentrates on the exploration of this sensing modality, propos-
ing a gesture processing scheme based on FFT and a deep learning classifier. The authors of
this study propose a CNN–LSTM classifier trained and tested on the dataset consisting of 11
gestures. The proposed methodology achieved satisfying recognition accuracy of 87.17%.

Other studies dealing with radar-based gesture recognition have been proposed by
Ritchie et al. [87,88]. In the first study [87], the authors introduce a database of radar
micro-Doppler signatures called Dop-NET. This study checks the performance of several
classifiers, i.e., fine tree, fine k-NN, linear discriminant, quadratic discriminant, SVM linear,
and SVM quadratic achieving 69.7%, 71.4%, 54.6%, 59.7%, 61.9%, and 74.2% accuracy,
respectively. In the next study [88], authors employ the k-NN classifier, thereby achieving
87.0% accuracy.

3. System Description and Implementation

In this section, we present the system components, evaluation methods, and im-
plementation details (i.e., hardware details, operating parameters, experimental setup,
proposed signal processing, and gesture vocabulary).

3.1. The General Overview of the Proposed Framework

Figure 1 presents the process of data collection, classifier training, and evaluation pro-
posed in this study. Each sample has been first preprocessed and subsequently converted
into the 3D tensor. After the training process, the model has been frozen, subsequently
quantized in the post-training phase, compiled, and deployed on the Coral Edge TPU board.

FMCW Radar Data
Acquisition

Classifier training

Classifier optimization

Sample labeling

(known data to train
classifier)

Sample labeling

(known data to train
classifier)

Classifier evaluation and final decision

Signal Preprocessing

• 1st order FFT
• 2nd order FFT
• CAPON beamformer
•Data matrix
generation

Signal Preprocessing

• 1st order FFT
• 2nd order FFT
• CAPON beamformer
•Data matrix
generation

Figure 1. Data collection, preprocessing, training, and evaluation process of the proposed hand
gesture recognition framework for FMCW radar.

3.2. Radar

The radar sensor used in this work is the BGT60TR13C FMCW radar sensor designed
and manufactured by Infineon Technologies AG with the center frequency of 60.0 GHz.
The BGT60TR13C is a low-power, low-cost, and high-resolution solution. The radar board
has been depicted in Figure 2.

Sensors 2021, 21, 7298 7 of 28

Figure 2. BGT60TR13C radar board [89].

The radar chip is equipped with three receiving antennas and one transmitting an-
tenna. The operation principle of an FMCW radar sensor is as follows: the BGT60TR13C
sends a periodic chirp signal through a transmitting antenna, and it receives a signal
reflected from an object using one of the three receiving antennas with the round trip
propagation delay τk and the Doppler shift fD. Figure 3 represents the block diagram of
the radar system.

Figure 3. BGT60TR13C radar sensor block diagram [89]. The signal sensed by the three receiver
channels (RX1, RX2, and RX3) is mixed with the transmitted signal from TX1, processed, and then
converted digitally through the ADC.

The transmitted and received signals are then mixed and passed to a baseband chain
and to an analog-to-digital converter (ADC) with 12-bit resolution and up to 4 MSps
sampling rate. Each baseband chain consists of a high pass filter, a voltage gain amplifier
(VGA), and antialiasing filters. The digitized signal is stored in a FIFO buffer; then, the data
is sent to an external host for further signal processing. This feature makes the device
suitable for the hand gesture recognition application. The chipset transmits the signal up
to 6 GHz (57 GHz–63 GHz) bandwidth; therefore, it provides the range resolution ∆r of

Sensors 2021, 21, 7298 8 of 28

2.5 cm and the velocity resolution ∆v of 122 cm/s. ∆r and ∆v can be expressed with the
following formulas:

∆r =
c

2B
= 2.5 cm (1)

∆v =
c

2 fc
· 1

ncTc
= 122 cm/s (2)

where fc is the center frequency between 57 GHz and 63 GHz, which is set to 60 GHz, Tc
is the chirp duration, and nc is the number of repeatedly transmitted chirp signals, set to
37 µs and 64, respectively. The transmitted signal is modulated using the sawtooth wave
function. Figure 4 presents the radar operating parameters.

Fr
e

q
u

e
n

cy

B = 6 GHz

tk

Time

32 samples
1 RX channel

….1 2 64

Tc = 37 μs

Figure 4. FMCW waveform in the frequency domain.

3.3. Radar Signal Model

The frequency of the transmitted FMCW waveform with bandwidth B and chirp
duration Tc can be expressed as follows:

ft = fc +
B
Tc
· t (3)

where fc is the carrier frequency. The reflected signal from the target is mixed with the
replica of the transmitted signal resulting in beat signal. The phase of the beat signal after
mixing due to kth point target is:

φk(t) = 2π

(
fcτk +

B
Tc

tτk −
B

2Tc
τ2

k

)
(4)

The round trip propagation delay τk between the transmitted and received signal
after reflection from the kth target with range Rk, radial velocity vk, and speed of light c,
approximately 3× 108 m/s, is expressed with the following formula:

τk =
2(2Rk + v)

c
(5)

The intermediate frequency (IF) signal is the superposition of received signal from K
point-scatters and expressed with the following formula:

sIF(t) =
K

∑
k=1

exp
(

2π

(
2 fcRk

c
+

(
2 fcvk

c
+

2BRk
cTc

)
t
))

(6)

3.4. Radar Signal Processing

The collected radar raw signal is not easily interpretable; it is, in fact, hard to extract
the relevant information from it, due to white noise and the influence of the environment
surrounding the target. In the case of FMCW radar, waveforms expressed on the time-
amplitude function are often not distinguishable.

Sensors 2021, 21, 7298 9 of 28

3.4.1. Range Doppler Image Generation

The radar signal processing consists of several steps. The frequency shifts due to
range and velocity arising from multiple point targets at the IF signal are decoupled by
generating a range-Doppler image (RDI) across three RX channels of the radar sensor.
Denoting the time index t as ni, where n f is the fast time index 0 < n f < Tc, and ns as a
slow time index. The received signal sIF(t; nk) at frame nk forms the consecutive chirps
arranged in the form of a 2D matrix, i.e., sIF(ns, n f ; nk). The RDI is generated for each
channel by subtracting the mean value of each chirp from each sample, applying the Hann
window function and zero padding. Then, the 1D fast Fourier transform (FFT) along the
fast time direction resolves the signal in range, and the application of the Hann window
function, zero padding, and 1D FFT along the slow time direction allows the extraction of
the Doppler information. Subsequently, the absolute value of the two 1D FFT transforms is
computed and the median and Wiener filters are applied to increase the signal-to-noise
ratio. The ghost targets are removed by applying the OS-CFAR algorithm in both fast time
and slow time directions. The two 1D FFTs transform the signal sIF(ns, n f ; nk), along fast
time and slow time, into single RDI.

S(p, q, nk) =
ZNc

∑
ns=1

ZNTS

∑
n f =1

w f (n f)sIF(ns, n f ; nk)e
−j2πpn f

ZNTS

 · ws(ns)e
−j2πqns

ZNc (7)

where NTS and ZNTS denote the number of transmitted samples and zero padding along
fast time, respectively. Nc and ZNc stand for the number of chirps in a frame and zero
padding along the slow time. w f (n f) and ws(ns) represent the window functions along fast
time and slow time. p and q denote the index over the range and Doppler. RDI including
the information about the range and radial velocity can be expressed as follows:

RDI =

S(1, 1) S(1, 2) . . . S(ZNTS, 1)
S(1, 2) S(2, 2) . . . S(ZNTS, 2)

...
...

. . .
...

S(1, ZNc) S(2, ZNc) . . . S(ZNTS, ZNc)

3.4.2. Angle Estimation

The next step of signal processing is the estimation of the direction of arrival (DOA).
In our application, we implemented the minimum variance distortionless response (MVDR)
or Capon beamformer [90]. The basic principle of digital beamforming is to scan the
space by generating a maximum beam pattern corresponding to a selected direction and
measuring the output power P(θ) of the digital signal S(p, q, nk). The maximum power
P(θ) corresponds to the DOA of the digital signal. The output power P(θ) is defined as
follows:

P(θ) = wHSSHw = wH Rssw (8)

where Rss is the covariance matrix, and w is the weight matrix.
The signal received from the antennas consists of the raw signal and noise. The raw

signal for each channel is correlated since it comes from the same source. The noise is
assumed to be uncorrelated Gaussian white noise; therefore, the covariance matrix of the
noisy signal can be expressed as follows:

Rxx = E{s(t)sH(t)} (9)

The goal of the Capon beamformer is minimizing the total variance under the con-
straint that the target response is unitary, hence Capon beamformer can be formulated
as follows:

min(P(θ)) subject to wHa(θ) = 1 (10)

where weight vector w can be written as follows:

Sensors 2021, 21, 7298 10 of 28

w =
R−1

ss a(θ)
aH(θ)R−1

ss a(θ)
(11)

Substituting Equation (10) into (8), we obtain the equation for estimating the an-
gle spectrum:

P(θ) =
1

aH(θ)R−1
ss a(θ)

(12)

In our use case, the Capon beamformer is used for the azimuth angle estimation.
The Capon beamformer for each frame generates a range-angle image (RAI).

3.4.3. Dataset Generation

In this work, we apply a data transformation from a high-dimensional space into a low-
dimensional space, to generate for every gesture range time, velocity time, and azimuth
time maps. Generated RDIs and RAIs form the volume SR ∈ Rt×x×y× f where t ≥ 1. Each
timestep stores an RDI and RAI denoted by Φ ∈ Rx×y× f , where x× y correspond to the
range and Doppler dimensions in the case of RDI, range and angle dimensions in the
case of RAI, and f is the number of feature channels, which is in our case two, as the first
channel stores an RDI, while the second RAI. Single RDI and RAI form a matrix with m× n
dimensions, where x ∈ {1, .., m} and y ∈ {1, .., n}.

Φm,n =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

The goal is to find an index (i, j) of the largest element amax

i,j in the matrix, denoting
I = {1, ..., m} and J = {1, ..., n} as sets of row and column indices. There is an index
i, j, ∃i ∈ I, and ∃j ∈ J such that aij is the maximum element of the matrix. The next
phase is slicing the vectors Rt

1×n, Vt
n×1, and At

1×n with the vector representing the distance
of the target from radar, radial velocity, and DOA in the given time step of the gesture.
Subsequently, vectors Rt

1×n and At
1×n are transposed Rt

1×n
T , At

1×n
T . In the next step,

vectors Rt
1×n

T , Vt
n×1, and At

1×n
T are concatenated with the subsequent time slices forming

range time, velocity time and azimuth time images. The proposed signal processing
method enables the data dimensionality reduction, thereby leading to good classification
results. Figure 5 depicts the generation of the range time image; however, the analogous
procedure is applied generating velocity time and angle time images.

...

TransposeTranspose ... Stack Stack

Projected 2D

Radar Image

Set of RDIs

Figure 5. Projection of the extracted RDIs into 2D radar image.

Sensors 2021, 21, 7298 11 of 28

Figure 6 delineates the detailed generation scheme of range-time, velocity-time and
angle-time images.

sIF(t)
Window

function along
fast time

1D FFT
along fast

time

Window
function along

slow time

1D FFT along
slow time

Set of RDIs

2D Median
filter

1D OS-CFAR
along Doppler

1D OS-CFAR
along range

Absolute
value

Mean
subtraction

2D Wiener
filter

RDI Generation

Capon
Beamformer

Set of RAIs

Projection into
2D Plane

Angle
Estimation

Figure 6. Generation scheme of range time, velocity time, and angle time images.

3.5. Gesture Vocabulary

The system defines eight gestures: (a) down -> up (swiping the hand from down to
top), (b) up -> down (swiping the hand from top to bottom), (c) left -> right (swiping the
hand from left to right), (d) rubbing (rubbing with fingers), (e) right -> left (swiping the
hand from right to left), (f) diagonal southeast -> northwest (swiping the hand from left
bottom corner to right top corner), (g) diagonal southwest -> northeast (swiping the hand
from right bottom corner to left top corner), and (h) clapping (clapping hands). Figure 7
presents the t-SNE representation of the collected data. Figure 7 consists of subfigures (a),
(b), (c), and (d) presenting the t-SNE representation of combined data, t-SNE representation
of range time maps, t-SNE representation of velocity time maps, and t-SNE representation
of azimuth time maps, respectively. It can be clearly noticed that concatenating the collected
data, i.e., the composition of range time, velocity time, and azimuth time maps, allows for
the best separation of clusters. Considering the remaining representations, we can notice
that the quality of data separation is worse.

t-SNE – combined data t-SNE – range/time

t-SNE – velocity/time t-SNE – azimuth/time

(a) (b)

(d)(c)

Figure 7. (a) t-SNE representation of all information, including range time maps, velocity time maps,
and azimuth time maps. It is clearly visible that the composition of this information together allows
for the separation of clusters; (b) t-SNE representation of range time maps; (c) t-SNE representation
of velocity time maps; and (d) t-SNE representation of azimuth time maps.

Sensors 2021, 21, 7298 12 of 28

The plots representing individual gestures have been depicted in Figures 8–11. Every
single gesture is represented by the range time, velocity time, and azimuth time maps.
The gestures have been performed by five different individuals, within three days, in three
different environments. None of the individuals have been previously trained on how to
perform the gestures. The individual gestures in Figures 8–11 are marked accordingly with
the consecutive letters a–h. The temporal boundaries of gestures are based on a threshold
mechanism. Every gesture is therefore sensed as long as the threshold is exceeded over time.

As can be noticed from the plots in Figures 8–11, all the gestures differ from each other
by some features in range, speed, or angle. By looking at the first two gestures, down-up
and up-down, for example, the main differences lay in the range time plot. For the down-up
gesture instance, the target, i.e., hand, is located in the early stage, approximately 3 cm
above the radar. This trend is different for the up-down gesture, where in the early phase,
the target is located around 20 cm above the sensor. In this case, range time and angle time
maps exhibit similar behavior since the velocity in both cases is roughly the same, and on
the horizontal plane, the angle practically does not change.

Regarding the gestures left -> right and right -> left, it can be noticed that the range time
and velocity time maps exhibit similar tendencies; however, analyzing the angle time plots,
it is clearly visible that the target approaches the sensor from the two opposite directions.

As for the rubbing gesture, the plots clearly show that the target’s distance from the
sensor, the relative velocity, and the DOA roughly do not change.

By analyzing the southwest -> northeast (diagonal) and southeast -> northwest (diag-
onal) gestures, the range angle and velocity angle map results are very similar. However,
the angle time plots show that the target approaches the radar from two different directions.

The plots representing the clapping gesture are slightly different from the others.
While the distance from the sensor and the radial velocity does not change, the angle time
map clearly shows a signal scattering pattern. It is explainable because range and velocity
over time are relatively stable, while the target approaches the sensor from both sides,
causing the signal scattering.

(a) down->up

(b) up->down

Figure 8. Gesture signatures.

Sensors 2021, 21, 7298 13 of 28

(a) left->right

(b) rubbing

Figure 9. Gesture signatures cont.

(a) right->left

(b) sw->ne (diagonal)

Figure 10. Gesture signatures cont.

Sensors 2021, 21, 7298 14 of 28

(a) se->nw (diagonal)

(b) clapping

Figure 11. Gesture signatures cont.

3.6. Experimental Setup

The experimental setup consists of Raspberry Pi4, Coral Edge TPU accelerator, BGT60TR13C
radar board, and a 3D-printed case, which is fixed to a camera tripod. The data collection
software has been run on a Raspberry Pi4. However, the final, optimized model has been
deployed on the Coral Edge TPU board. Figures 12 and 13 present the data collection setup
and inference setup.

(a) (b) (c)

Figure 12. Data collection setup; (a) Raspberry Pi4; (b) 3D-printed case and radar board; and (c)
tripod with 3D-printed case and radar board.

Sensors 2021, 21, 7298 15 of 28

(b) (c)(a)

Figure 13. Inference setup; (a) Coral Edge TPU; (b) 3D-printed case and radar board; and (c) tripod
with 3D-printed case and radar board.

4. Deep Learning Classifier

In this section, we present the details of the proposed deep neural classifier derived
from MobileNetV1, which has been named Radar Edge Network. In the next subsections,
we discuss the structural details of the proposed building blocks.

4.1. CNN Architecture

The typical CNN consists of the following building blocks:

• Input Layer: representing the input data in the form of a 3D tensor.
• Convolutional Layer: the main objective of a convolutional layer is the feature extrac-

tion achieved by convolving the input data with a kernel in the form of a 2D matrix.
The filter kernels are moved through the input data generating the output (feature
maps) of the convolutional layer. The principle of operation of the convolutional layer
is depicted in Figure 14.

• Batch Normalization Layer: the layer used after convolution to speed up the train-
ing process.

• Activation Function: the activation function, e.g., ReLu, LeakyRelu, ReLu6, SiLu,
SeLu, and GELU. It is used to introduce the nonlinearity, and to be able to learn more
sophisticated data patterns.

• MaxPooling2D: the layer utilized for the dimensionality reduction and feature extrac-
tion of the most relevant data.

• Regularization Layers: e.g., Dropout, AlphaDropout, and GaussianDropout; em-
ployed to make the classifier noise resistant.

x =

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

1

1

1

Figure 14. Convolution—principle of operation.

Sensors 2021, 21, 7298 16 of 28

4.2. Radar Edge Network

The operations discussed above represent the typical structure of CNN architecture.
Typically the layers are stacked on each other forming the hidden layer of a CNN. The grad-
ual increment of the number of layers and number of the convolutional filters is the
common way of increasing the complexity of feature extraction in the network, thereby
contributing to higher classification accuracy. The increase of the number of layers gener-
ates some limitations, namely the networks can become vulnerable to overfitting problems,
and the increased number of parameters prevents the model from deployment on edge
computing devices. This work presents the novel building block—Depthwise Expansion
Module derived from MobileNetV1 topology, which is commonly used in applications
related to edge computing. The proposed building block is based on the main building
block of MobileNetV1—depthwise separable convolutions. The proposed structural-level
amendments enable the extraction of the most relevant features while saving a significant
number of parameters, thereby making the network less prone to overfitting problems.
A detailed description of the proposed block and the proposed model is presented in the
next sections.

4.2.1. Depthwise Separable Convolutions

The building block of MobileNetV1 is a depthwise separable convolution. The main
advantage of depthwise separable convolution is the drastic reduction of the number of
parameters achieved by applying a depthwise convolution and a 1× 1 convolution called
a pointwise convolution. As depicted in Figure 15, the depthwise convolution applies a
single kernel to each input channel (channelwise), while the standard convolution applies
the single filter to each input channel. The computational cost of standard convolution can
be expressed as follows:

DK · DK ·M · N · DF · DF (13)

where M is the number of input channels, DF is the spatial dimension height and width
of the input feature map, N is the number of output channels, and DK is the spatial
dimension height and width of the kernel. While a pointwise convolution has the following
computational cost:

DK · DK ·M · DF · DF (14)

Depthwise Convolution

Pointwise
ConvolutionDk × Dk conv

1 × 1 conv

Figure 15. Depthwise separable convolution—principle of operation.

Sensors 2021, 21, 7298 17 of 28

The combination of depthwise convolution and pointwise convolution is called a
depthwise separable convolution. The computation cost of depthwise separable convolu-
tion is expressed as follows:

DK · DK ·M · DF · DF + M · N · DF · DF (15)

The reduction in computation is as follows:

DK · DK ·M · DF · DF + M · N · DF · DF
DK · DK ·M · N · DF · DF

=
1
N

+
1

D2
K

(16)

4.2.2. Depthwise Expansion Module

The proposed building block is inspired by the MobileNetV1. In the original Mo-
bileNetV1 implementation, the standard CNN2D and Depthwise2D convolutions are
interleaved with each other, increasing linearly the number of convolutional filters, thereby
causing a drastic increment in the number of parameters.

In this work, we propose a module—Depthwise Expansion, employing the bottleneck
approach, i.e., it makes use of the Depthwise2D convolution to increase the number of
feature maps, followed by standard CNN2D, which performs the final feature embedding.
First, the Depthwise2D convolution with a double number of feature maps is applied. This
is achieved by setting the depth multiplier parameter to 2. The Depthwise2D convolution
is followed by a standard CNN2D, decreasing by half the number of feature maps and
performing the most relevant feature embedding. Subsequently, another CNN2D is applied
to perform further feature extraction. The number of CNN2D filters is changed according
to the following rule: 2 · bα · f iltersc, where f ilters for the first Depthwise Expansion
module is 64, while for the second Depthwise Expansion module it is 32. α is the parameter
determining the depth of the network and its values are as follows: 1, 0.75, 0.50, and 0.25.
The extracted features are fed to the second Depthwise2D convolution which doubles the
number of generated feature maps. Finally, the standard CNN2D with stride 2 and kernel
size 1× 1 is applied for feature embedding and spatial dimensionality reduction. Figure 16
presents the proposed module.

Depthwise2D,
3x3,

ReLu6

Conv2D,
1x1, s1,
ReLu6

Conv2D,
1x1, s1,
ReLu6

Depthwise2D,
3x3,

ReLu6

Conv2D,
1x1, s2,
ReLu6

input
tensor

output
tensor

Depthwise2D,
3x3,

ReLu6

Conv2D,
1x1, s1,
ReLu6

Conv2D,
1x1, s1,
ReLu6

Depthwise2D,
3x3,

ReLu6

Conv2D,
1x1, s2,
ReLu6

input
tensor

output
tensor

Figure 16. Depthwise expansion module.

4.2.3. Proposed Classifier

As stated earlier, the Radar Edge Network is based on an architecture presented by
Google, named MobileNetV1. In the original implementation, Google linearly increases
the complexity of the network by incrementing the number of convolutional filters. Mo-
bileNetV1 applies 13 depthwise separable convolutional modules, followed by global
average pooling for a drastic dimensionality reduction, and a fully connected layer per-
forming the final classification. Although the base MobileNetV1 architecture is small
and offers low latency capabilities, Google introduced a very simple parameter α called
width multiplier. This parameter is used to construct a smaller and less computation-
ally expensive model, manipulating the number of generated feature maps at each layer.
The parameter α ∈ (0, 1], and its values are as follows: 1, 0.75, 0.50, and 0.25. The α = 1 is
the baseline MobileNetV1 and α < 1 are reduced MobileNets.

Sensors 2021, 21, 7298 18 of 28

As opposed to the original MobileNetV1 implementation, the proposed classifier does
not apply an incremental approach but increases the number of feature maps applying the
Depthwise2D convolution. Then the number of feature maps is decreased by performing
the feature embedding. Instead of global average pooling, a standard flattening layer
is applied.

Finding the best set of parameters is usually a very complex problem, and it is
typically strictly task dependent. In this work, we tested several possible variants of
Radar Edge Network with different values of α parameters, i.e., 0.25, 0.50, 0.75, and 1.00.
We conducted a detailed analysis of the relationship between accuracy and the number
of depthwise expansion modules, model size and the number of depthwise expansion
modules, number of depthwise expansion modules and inference time, and model size
and inference time. The accuracy as a function of the number of the depthwise expansion
modules was considered, and the network with the highest accuracy is presented in
Figure 17.

First, the raw radar signal is preprocessed, then the 3D input tensor is constructed,
i.e., the range time, Doppler time, and azimuth time images are fed to the deep neural
classifier. The Radar Edge Network consists of two convolutional layers and two depthwise
expansion modules, followed by a MaxPooling2D layer, flattening layer, and fully con-
nected layer performing the final classification. The name depthwise expansion refers to
the application of the depthwise convolution to increase the number of extracted features.
The standard convolution is applied to drastically reduce the number of feature maps.
To the best of our knowledge, this type of module has never been implemented in the field
of gesture recognition with radar. As stated, we tested several variants of the proposed
network with parameter α varying from 0.25 to 1.0. α ∈ (0, 1].

Figure 17. Proposed classifier.

4.3. Edge TPU Deployment

In this section, we describe the steps taken to deploy the model on the Coral Edge TPU
board. In the first stage of the deployment process, the model is implemented and trained.
Then, the weights are converted to constants and the model is optimized, i.e., quantized to
8-bit integer accuracy. In this work, we perform the post-training quantization using the
representative dataset. The model is compiled in a binary format supported by the Edge
TPU and a compatibility check is performed, i.e., execution compatibility on the TPU chip.
Finally, the compiled model is deployed on the Edge TPU board and the inference and
performance tests are performed. Figure 18 presents the Edge TPU deployment workflow.

Sensors 2021, 21, 7298 19 of 28

Model Design
Train

Convert

TensorFlow model
32-bit float numbers

TensorFlow model
32-bit float numbers

Edge TPU Model
.tflite file

Frozen Graph
.pb file

Export

Deploy

Freeze

Post-training
quantization

TensorFlow Lite
8-bit fixed numbers
TensorFlow Lite

8-bit fixed numbers

Inference and
Testing

Coral Edge TPU
board

Compatibility
Check

Figure 18. Edge TPU deployment workflow diagram.

5. Performance Evaluation

In this section, we present and discuss the experimental results. First, we analyze
the test accuracy of the proposed classifiers. Then, we compare the performance of the
proposed classifiers with the existing techniques, i.e., we analyze the test accuracy achieved
by the classifiers deployed on the x86 and Coral Edge TPU platforms. Next, we investigate
the model sizes for both implementations, i.e., x86 and Coral Edge TPU. Then, we consider
and compare the inference times attained for both implementations, i.e., x86 and Coral
Edge TPU. Finally, we discuss the results, and we compare the performance of the proposed
classifiers with classifiers widely used in the edge computing field.

5.1. Classification Accuracy

We performed several structural adaptations while designing the deep learning
topology for hand gesture recognition. To determine the most optimized model, we
trained several models dependent on an α parameter which defines the number of fea-
ture maps per CNN2D layer. The proposed topologies with the increasing value of
α ∈ {0.25, 0.50, 0.75, 1.00} have been called Proposed 1, Proposed 2, Proposed 3, and
Proposed 4. The accuracy as a function of different values of α parameter is depicted in
Figure 19. The vertical axis represents the accuracy, while the horizontal axis represents the
classifiers with different values of α parameter.

97.4

97.5

97.6

97.7

97.8

97.9

98.0

98.1

α parameter

0.25 0.50 0.75 1.00

A
c
c
u

ra
c
y
 [

%
]

Topology

Proposed 1

Proposed 2

Proposed 3

Proposed 4

Figure 19. Test accuracy for different values of alpha parameters for the classifier.

Sensors 2021, 21, 7298 20 of 28

It can be observed through the bar plots in Figure 19 that the networks with a value of
α parameter equal to 0.25 achieved the best accuracy (98.13%). As illustrated in Figure 19,
the topology with the lowest value of α parameter achieves the best convergence to the
dataset. In addition, the topologies with increasing α parameter slightly deteriorate the
classification accuracy.

Figure 20 displays the confusion matrix of the proposed gesture recognition frame-
work. The rows represent the original gesture class, whereas the columns present the
predicted gesture class. The classification accuracy of each gesture is presented in yellow
in the main diagonal, whereas the erroneously classified gestures are shown in dark violet.
As can be seen, the up-down and rubbing gestures show a higher accuracy, as they generate
highly distinguishable patterns in comparison to the other gestures. The remaining hand
gestures exhibit a slightly lower accuracy rate compared to up-down and rubbing. Their
misclassification rate oscillates in fact, between 2% and 3% more, mainly due to their more
complicated patterns.

do
wn-u

p

up
-do

wn

lef
t-ri

gh
t

rub
bin

g

rig
ht-

lef
t

sw
->ne

se-
>nw

cla
pp

ing

predicted label

down-up

up-down

left-right

rubbing

right-left

sw->ne

se->nw

clapping

tru
e

la
be

l

97 0 0 0 0 3 0 0

0 100 0 0 0 0 0 0

0 0 98 0 0 2 0 0

0 0 0 100 0 0 0 0

0 0 0 0 98 0 2 0

0 0 2 0 1 97 0 0

0 0 0 0 1 1 98 0

0 0 0 0 1 1 1 97

Figure 20. Confusion matrix.

5.2. Comparison with Existing Techniques

In this section, we carry out a detailed analysis of the performance, including accu-
racies, model sizes, and inference times. First, we compare the proposed topology with a
classic CNN3D architecture, consisting of four CNN3D layers, which is trained from scratch.
The further comparisons include the CNN2D and the MobileNetV2 with a variable number
of bottleneck modules. The traditional CNN2D classifier consists of seven layers and it
has also been trained from scratch. Table 1 presents the test accuracies of non-optimized

Sensors 2021, 21, 7298 21 of 28

and optimized classifiers. It can be seen, in the case of implementation on x86 processor as
well as on the Edge TPU, that the classification accuracies dwell on similar levels. The best
accuracy is achieved by the CNN3D classifier. In the case of the deployment on an x86
processor, the CNN3D achieves 99.63% accuracy, while the classification for Edge TPU
is not feasible due to the lack of 3D CNN support. The lowest accuracy is achieved with
the standard CNN2D methods. In both cases, the test accuracy remains on a comparable
level, i.e., the models achieve 86.25% and 85.88% for x86 and Edge TPU implementation,
respectively. The other classifiers in terms of classification accuracy remain on relatively
the same level.

Table 1. Comparative characteristics of accuracies for the non-optimized and the optimized versions.

Accuracy [%]

x86 Edge TPU

To
po

lo
gi

es

CNN3D 99.63% N/A
CNN2D 86.25% 85.88%

MobileNetV2—1 bottleneck 98.88% 98.88%
MobileNetV2—2 bottleneck 99.00% 98.75%
MobileNetV2—3 bottleneck 97.13% 97.25%
MobileNetV2—4 bottleneck 98.50% 98.50%
MobileNetV2—5 bottleneck 97.75% 97.75%
MobileNetV2—6 bottleneck 98.00% 97.88%

Proposed 1 98.00% 98.13%
Proposed 2 97.50% 97.38%
Proposed 3 98.13% 98.00%
Proposed 4 97.63% 97.63%

Table 2 presents the comparison of our proposed methods with other gesture recogni-
tion approaches. The table provides information about the model, the number of recognized
gestures, the test accuracy, and the type of algorithm, i.e., deep learning, FDTW, k-NN,
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), or support
vector machine (SVM). We can see that the deep learning methods dominate among the
gesture recognition algorithms. In most of the cases, the deep learning methods are su-
perior to the standard methods. It is particularly noticeable in the experiments carried
out by Ritchie et al. [87]. In this work, a radar micro-Doppler database representing four
gestures is introduced. The proposed database has been used for the training of several
classifiers, i.e., k-NN, LDA, QDA, and SVM, achieving relatively average accuracy results.
Further, the presented results do not allow a real-time system operation. In the next
work, Ritchie et al. [88] carried out a feature extraction, obtaining the following features:
spectrogram summed intensity, spectrogram variance, spectrogram mean power, singular
value decomposition (SVD) of spectrogram, and entropy of spectrogram intensity. The ob-
tained features allowed achieving an accuracy of 87% with the k-NN classifier. It should
be noticed that the classifiers used by Ritchie et al. [87,88] are not directly supported by
edge devices. The other work addressing the gesture recognition problem was carried
out by Lien et al. [77]. This work introduces the radar as a novel sensing modality, which
can be used for gesture recognition. In this study, the gesture recognition procedure is
realised employing the random forest classifier, which achieves 92.10% accuracy. In this
case, the employed classifier is not also directly supported by the random forest classifier.
Wang et al. [85] proposes the radar-based gesture recognition system. In this case, the
system supports the recognition of six gestures. This work introduces the non-deep learn-
ing approach based on an FDTW algorithm, achieving 95.83% accuracy. The remaining
approaches are based on the deep-learning techniques; however, only two of them provide
the support for edge computing devices, i.e., the proposed method and [79].

Sensors 2021, 21, 7298 22 of 28

Table 2. Comparison with other approaches. DL: deep learning, k-NN: k-Nearest Neighbour, LDA:
linear discriminant analysis, QDA: quadratic discriminant analysis, SVM-l: support vector machine
with linear kernel, SVM-q: support vector machine with quadratic kernel.

Model No. Gestures Accuracy Type of Algorithm

Hazra et al. [27] 5 94.34% DL
Zhang et al. [74] 8 96.00% DL
Ahmed et al. [75] 8 95.00% DL
Hazra et al. [28] 6 94.50% DL

Molchanov et al. [76] 11 94.10% DL
Lien et al. [77] 4 92.10% RF

Chmurski et al. [78] 4 95.05% DL
Chmurski et al. [79] 4 98.10% DL
D’Eusanio et al. [23] 25 87.60% DL
D’Eusanio et al. [23] 12 97.20% DL
Molchanov et al. [24] 25 83.80% DL
D’Eusanio et al. [26] 25 76.10% DL
D’Eusanio et al. [26] 12 92.00% DL

Wang et al. [85] 6 95.83% FDTW
Wang et al. [86] 4 87.17% DL

Ritchie et al. [87] 4 69.7% DT
Ritchie et al. [87] 4 71.4% k-NN
Ritchie et al. [87] 4 54.6% LDA
Ritchie et al. [87] 4 59.7% QDA
Ritchie et al. [87] 4 61.9% SVM-l
Ritchie et al. [87] 4 74.2% SVM-q
Ritchie et al. [88] 4 87.0% k-NN

Proposed 1 (Edge TPU) 8 98.13% DL

One very important parameter in the case of deployment on resource-constrained
devices is the model size. Table 3 presents the model sizes for the deployment on both
the x86 processor and the Edge TPU. It can be seen that the CNN3D generates a large
number of parameters, which leads to a large model size of around 12 MB, and thereafter
it does not enable the deployment on resource-constrained hardware. In the case of the
other classifiers, a significant difference in model size between the non-optimized and
the optimized versions can be noticed. The smallest model size has been achieved by
the CNN2D classifier, where the sizes for the non-optimized and optimized versions are
375.89 KB and 80.67 KB, respectively. Regarding the MobileNetV2 classifier, the model
sizes for the x86 processor are 1770.96 KB, 2028.85 KB, 2287.06 KB, 2545.35 KB, 2804.27 KB,
and 3063.25 KB, whereas the model sizes for Edge TPU implementation are 200.67 KB,
232.67 KB, 264.67 KB, 296.67 KB, 328.67 KB, and 360.67 KB. The best compression results
have been achieved in the case of the proposed model. The model sizes for x86 imple-
mentation are 624.92 KB, 999.00 KB, 1543.89 KB, and 2233.44 KB, while the model sizes for
Edge TPU implementation are 92.67 KB, 140.67 KB, 220.67 KB, and 280.67 KB.

The last analyzed parameter is the mean inference time. This parameter strongly
influences the interaction experience, which plays a particular role during real-time system
operations. Table 4 presents the achieved inference times for the deployment on the x86
and Edge TPU. Analyzing the data in Table 4, one may notice the benefits coming from
the Edge TPU implementation. It can be seen that in most cases the inference times for
x86 implementation are significantly longer, i.e., 3.57 ms, 1.16 ms, 2.19 ms, 4.17 ms, 5.66
ms, 8.52 ms, 8.74 ms, 10.42 ms, 5.74 ms, 10.18 ms, 14.22 ms, and 20.73 ms. Edge TPU
implementations show significantly shorter inference times, i.e., 3.61 ms, 1.19 ms, 1.52 ms,
1.65 ms, 1.79 ms, 1.92 ms, 2.04 ms, 1.28 ms, 1.63 ms, 1.76 ms, and 1.90 ms.

Sensors 2021, 21, 7298 23 of 28

Table 3. Comparative characteristics of model sizes for the non-optimized and the optimized versions.

Size [KB]

x86 Edge TPU

To
po

lo
gi

es

CNN3D 12,586.58 N/A
CNN2D 375.89 80.67

MobileNetV2—1 bottleneck 1770.96 200.67
MobileNetV2—2 bottleneck 2028.85 232.67
MobileNetV2—3 bottleneck 2287.06 264.67
MobileNetV2—4 bottleneck 2545.35 296.67
MobileNetV2—5 bottleneck 2804.27 328.67
MobileNetV2—6 bottleneck 3063.25 360.67

Proposed 1 624.92 92.67
Proposed 2 999.00 140.67
Proposed 3 1543.89 220.67
Proposed 4 2233.44 280.67

Table 4. Inference time.

Inference [ms]

x86 Edge TPU

To
po

lo
gi

es

CNN3D 3.57 N/A
CNN2D 1.16 3.61

MobileNetV2—1 bottleneck 2.19 1.19
MobileNetV2—2 bottleneck 4.17 1.52
MobileNetV2—3 bottleneck 5.66 1.65
MobileNetV2—4 bottleneck 8.52 1.79
MobileNetV2—5 bottleneck 8.74 1.92
MobileNetV2—6 bottleneck 10.42 2.04

Proposed 1 5.74 1.28
Proposed 2 10.18 1.63
Proposed 3 14.22 1.76
Proposed 4 20.73 1.90

6. Conclusions

In this work we have presented a novel deep learning classifier—Radar Edge Net-
work. We have illustrated the detailed implementation of a hand gesture recognition
system using an FMCW radar. The Radar Edge Network introduces the deep learning
module—Depthwise Expansion Module inspired by MobileNetV1 architecture. Essentially,
the proposed module employs the Depthwise2D convolution followed by the traditional
CNN2D to perform the feature extraction. The application of Depthwise2D convolution
has several benefits. Namely, it allows for saving a significant number of parameters, which
then has an advantageous effect on the model size and the deployment on the edge. The
proposed module increases the number of extracted feature maps using the Depthwise2D
convolution and then employs the standard CNN2D with a 1 × 1 filter size for feature
embedding. Then, the Depthwise2D convolution doubles the number of feature maps,
and CNN2D with 1 × 1 filter size performs the final feature embedding.

Additionally, the proposed signal processing approach leads to the decreasing of
data dimensionality. This is of particular importance in the case of the deployment on
resource-constrained devices. Furthermore, thanks to the simplified data shape, it is
possible to design a model that achieves very good classification performance while being
also supported by edge computing systems.

Moreover, this work analyzes the effect of weight quantization and, to the best of
our knowledge, proposes the first 8-bit integer implementation of the radar-based gesture

Sensors 2021, 21, 7298 24 of 28

recognition system deployed on the edge device such as Edge TPU. The results presented
above validate our solution, particularly in terms of test accuracy, model size, and inference
time. Additionally, we carried out a rigorous comparison with the state-of-the art gesture
recognition approaches. Table 1 presents the classification results. It can be seen that the
best classification result has been achieved by the CNN3D classifier. However, the CNN3D
operation is not supported on resource-constrained devices, e.g., Edge TPU. In addition,
taking a closer look at Table 3, it can be noticed that the model size of CNN3D is around
12 MB. This feature is another important factor that does not permit a constrained edge
implementation. In the case of the remaining classifiers, the classification results are slightly
worse; however, the difference is not very significant, i.e., in most cases, the classification
results remain on a similar level. Analyzing Table 3, we can observe that in the case of
x86 implementation, the model sizes are significantly larger and that the 8-bit integer
implementation enables a significant amount of memory saving. A similar tendency can
be observed with inference times. The optimized versions of classifiers offer significantly
shorter inference times than in the case of x86 versions. It allows us to confirm the validity
of our optimizations.

Table 2 presents the performance of various gesture approaches, not limited to deep
learning and radar-based approaches. It consists of four columns representing the reference
to the model, number of recognized gestures, the achieved accuracy, and type of algo-
rithm. It can be seen that deep learning techniques are the most significant part of gesture
recognition solutions. Table 2 reports also the non-deep learning approaches. In most
cases, the non-deep learning approaches do not offer sufficient performance for real-time
system operation. Regarding the non-deep learning approach, Wang et al. [85] propose
in their work the system supporting six gestures and achieving 95.83% accuracy, based
on an FDTW algorithm. The deep learning approaches are very often leading to superior
results in comparison to the standard approaches. The performance of the classifier is also
strictly dependent on the dataset complexity. It is particularly visible in the cases of the
following studies [23,24,26]. Moreover, the dataset structure imposes the high complexity
of the classification algorithm. In our case, we ease the dataset structure to save hardware
resources and to be able to design a less complex classifier.

As future work, we will develop the software allowing for the data transfer between
the radar board and the Coral Edge TPU board, then we will design a real-time version of
our system to construct a standalone hardware and software solution. Moreover, in order
to test the robustness of the proposed classifier, we will record the test dataset in several
different environments.

Author Contributions: Conceptualization, M.C.; methodology, M.C.; validation, M.C.; formal anal-
ysis, M.C.; investigation, M.C.; data curation, M.C.; writing—original draft preparation, M.C.;
writing—review and editing, M.C., G.M., M.Z., A.S., and G.D.; funding acquisition, M.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work has received funding from the Electronic Components and Systems for European
Leadership Joint Undertaking under grant agreement No. 826655 (Tempo). This Joint Undertaking
receives support from the European Union’s Horizon 2020 research and innovation programme and
Belgium, France, Germany, Switzerland, and the Netherlands. The publication has been funded by
the internal university grant of the Lodz University of Technology.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to internal company board policy.

Acknowledgments: The authors would like to thank the reviewers for their time and efforts.

Conflicts of Interest: The authors declare no conflicts of interests.

Sensors 2021, 21, 7298 25 of 28

Abbreviations
The following abbreviations are used in this manuscript:

HCI Human–Computer Interaction
FMCW Frequency-Modulated Continuous Wave
RGB Red Green Blue
ToF Time of Flight
3DCNN 3D Convolutional Neural Networks
LSTM Long Short-term Memory
RNN Recurrent Neural Networks
IoT Internet of Things
LRACNN Long Recurrent All Convolutional Neural Network
NCS 2 Neural Compute Stick 2
RDM Range-Doppler Map
k-NN k-Nearest Neighbour
RFC Random Forest Classifier
CWT Continuous Wavelet Transform
R3DCNN Recurrent 3D Convolutional Neural Network
I3D Inflated 3D ConvNets
2D-FFT 2-Dimensional Fast Fourier Transform
MUSIC Multiple Signal Classification
FDTW Fusion Dynamic Time Wrapping
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
SVM Support Vector Machine
ADC Analog to Digital Converter
VGA Voltage Gain Amplifier
RDI Range-Doppler Image
FFT Fast Fourier Transform
RAI Range-Angle Image
SVD Singular Value Decomposition
MVDR Minimum Variance Distortionless Response
DOA Direction of Arrival

References
1. Shehab, A.H.; Al-Janabi, S. Edge Computing: Review and Future Directions (Computación de Borde: Revisión y Direcciones

Futuras). REVISTA AUS J. 2019, 368–380. [CrossRef]
2. Yasen, M.; Jusoh, S. A systematic review on hand gesture recognition techniques, challenges and applications. PeerJ Comput. Sci.

2019, 5, e218. [CrossRef] [PubMed]
3. Park, H.; McKilligan, S. A systematic literature review for human-computer interaction and design thinking process integration.

In Proceedings of the International Conference of Design, User Experience, and Usability, Las Vegas, NV, USA, 15–20 July 2018;
Springer: Cham, Switzerland, 2018; pp. 725–740.

4. Mirsu, R.; Simion, G.; Caleanu, C.D.; Pop-Calimanu, I.M. A pointnet-based solution for 3d hand gesture recognition. Sensors 2020,
20, 3226. [CrossRef]

5. Nebiker, S.; Meyer, J.; Blaser, S.; Ammann, M.; Rhyner, S. Outdoor Mobile Mapping and AI-Based 3D Object Detection with
Low-Cost RGB-D Cameras: The Use Case of On-Street Parking Statistics. Remote Sens. 2021, 13, 3099. [CrossRef]

6. Kumar, P.; Jaiswal, A.; Deepak, B.; Reddy, G.R.M. Hand gesture-based stable powerpoint presentation using kinect. In Progress in
Intelligent Computing Techniques: Theory, Practice, and Applications; Springer: Singapore, 2018; pp. 81–94.

7. Khari, M.; Garg, A.K.; Crespo, R.G.; Verdú, E. Gesture Recognition of RGB and RGB-D Static Images Using Convolutional Neural
Networks. Int. J. Interact. Multim. Artif. Intell. 2019, 5, 22–27. [CrossRef]

8. Nguyen, N.-H.; Phan, T.; Lee, G.; Kim, S.; Yang, H. Gesture Recognition Based on 3D Human Pose Estimation and Body Part
Segmentation for RGB Data Input. Appl. Sci. 2020, 10, 6188. [CrossRef]

9. Hakim, N.L.; Shih, T.K.; Arachchi, S.P.K.; Aditya, W.; Chen, Y.; Lin, C. Dynamic hand gesture recognition using 3DCNN and
LSTM with FSM context-aware model. Sensors 2019, 19, 5429. [CrossRef]

10. Kumar, P.; Gauba, H.; Roy, P.P.; Dogra, D.P. Coupled HMM-based multi-sensor data fusion for sign language recognition. Pattern
Recognit. Lett. 2017, 86, 1–8. [CrossRef]

11. Abeßer, J. A review of deep learning based methods for acoustic scene classification. Appl. Sci. 2020, 10, 2020. [CrossRef]

http://doi.org/10.4206/aus.2019.n26.2.45/
http://dx.doi.org/10.7717/peerj-cs.218
http://www.ncbi.nlm.nih.gov/pubmed/33816871
http://dx.doi.org/10.3390/s20113226
http://dx.doi.org/10.3390/rs13163099
http://dx.doi.org/10.9781/ijimai.2019.09.002
http://dx.doi.org/10.3390/app10186188
http://dx.doi.org/10.3390/s19245429
http://dx.doi.org/10.1016/j.patrec.2016.12.004
http://dx.doi.org/10.3390/app10062020

Sensors 2021, 21, 7298 26 of 28

12. Alexakis, G.; Panagiotakis, S.; Fragkakis, A.; Markakis, E.; Vassilakis, K. Control of smart home operations using natural language
processing, voice recognition and IoT technologies in a multi-tier architecture. Designs 2019, 3, 32. [CrossRef]

13. Agathya, M.; Brilliant, S.M.; Akbar, N.R.; Supadmini, S. Review of a framework for audiovisual dialog-based in human computer
interaction. In Proceedings of the 2015 IEEE International Conference on Information & Communication Technology and Systems
(ICTS), Surabaya, Indonesia, 16 September 2015; pp. 137–140.

14. Palacios, J.M.; Sagüés, C.; Montijano, E.; Llorente, S. Human-computer interaction based on hand gestures using RGB-D sensors.
Sensors 2013, 13, 11842–11860. [CrossRef]

15. Paravati, G.; Gatteschi, V. Human-computer interaction in smart environments. Sensors 2015, 15, 19487–19494. [CrossRef]
16. Singh, S.; Nasoz, F. Facial expression recognition with convolutional neural networks. In Proceedings of the 2020 IEEE 10th Annual

Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 0324–0328.
17. Manaris, B. Natural language processing: A human-computer interaction perspective. In Advances in Computers; Elsevier:

Amsterdam, The Netherlands 1998; Volume 47, pp. 1–66.
18. Katona, J. A Review of Human–Computer Interaction and Virtual Reality Research Fields in Cognitive InfoCommunications.

Appl. Sci. 2021, 11, 2646. [CrossRef]
19. Aditya, K.; Chacko, P.; Kumari, D.; Kumari, D.; Bilgaiyan, S. Recent trends in HCI: A survey on data glove, LEAP motion

and microsoft kinect. In Proceedings of the 2018 IEEE International Conference on System, Computation, Automation and
Networking (ICSCA), Pondicherry, India, 6–7 July 2018; pp. 1–5.

20. Ahmed, S.; Kallu, K.D.; Ahmed, S.; Cho, S.H. Hand gestures recognition using radar sensors for human-computer-interaction: A
review. Remote Sens. 2021, 13, 527. [CrossRef]

21. Yu, M.; Kim, N.; Jung, Y.; Lee, S. A frame detection method for real-time hand gesture recognition systems using CW-radar.
Sensors 2020, 20, 2321.

22. Kabanda, G. Review of Human Computer Interaction and Computer Vision; GRIN Verlag: Munich, Germany, 2019.
23. D’Eusanio, A.; Simoni, A.; Pini, S.; Borghi, G.; Vezzani, R.; Cucchiara, R. A Transformer-Based Network for Dynamic Hand

Gesture Recognition. In Proceedings of the IEEE 2020 International Conference on 3D Vision (3DV), Fukuoka, Japan, 25–28
November 2020; pp. 623–632.

24. Molchanov, P.; Yang, X.; Gupta, S.; Kim, K.; Tyree, S.; Kautz, J. Online detection and classification of dynamic hand gestures with
recurrent 3d convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 4207–4215.

25. Carreira, J.; Zisserman, A. Quo vadis, action recognition? a new model and the kinetics dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6299–6308.

26. D’Eusanio, A.; Simoni, A.; Pini, S.; Borghi, G.; Vezzani, R.; Cucchiara, R. Multimodal hand gesture classification for the human–car
interaction. In Informatics; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020; Volume 7, p. 31. [CrossRef]

27. Hazra, S.; Santra, A. Robust gesture recognition using millimetric-wave radar system. IEEE Sens. Lett. 2018, 2, 1–4. [CrossRef]
28. Hazra, S.; Santra, A. Short-range radar-based gesture recognition system using 3D CNN with triplet loss. IEEE Access 2019, 7,

125623–125633.
29. Hazra, S.; Santra, A. Radar gesture recognition system in presence of interference using self-attention neural network. In

Proceedings of the 2019 18th IEEE International Conference on Machine Learning And Applications (ICMLA), Boca Raton, FL,
USA, 16–19 December 2019; pp. 1409–1414.

30. Santra, A.; Hazra, S. Deep Learning Applications of Short-Range Radars; Artech House: Norwood, MA, USA, 2020.
31. Sun, Y.; Zhang, B.; Luo, M. Survey of Edge Computing Based on a Generalized Framework and Some Recommendation. In

Proceedings of the International Conference on Edge Computing, Honolulu, HI, USA, 18–20 September 2020; Springer: Cham,
Switzerland, 2020; pp. 111–126. [CrossRef]

32. Liu, F.; Tang, G.; Li, Y.; Cai, Z.; Zhang, X.; Zhou, T. A survey on edge computing systems and tools. Proc. IEEE 2019, 107,
1537–1562. [CrossRef] [PubMed]

33. Yang, Z.; Zhang, S.; Li, R.; Li, C.; Wang, M.; Wang, D.; Zhang, M. Efficient Resource-Aware Convolutional Neural Architecture
Search for Edge Computing with Pareto-Bayesian Optimization. Sensors 2021, 21, 444. [CrossRef]

34. Hamdan, S.; Ayyash, M.; Almajali, S. Edge-computing architectures for internet of things applications: A survey. Sensors 2020,
20, 6441. [CrossRef] [PubMed]

35. Koubâa, A.; Ammar, A.; Alahdab, M.; Kanhouch, A.; Azar, A.T. DeepBrain: Experimental Evaluation of Cloud-Based Computation
Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications. Sensors 2020, 20, 5240. [CrossRef]

36. McClellan, M.; Cervelló-Pastor, C.; Sallent, S. Deep learning at the mobile edge: Opportunities for 5G networks. Appl. Sci. 2020,
10, 4735.

37. TensorFlow Models on the Edge TPU. Coral. Available online: https://coral.ai/docs/edgetpu/models-intro/#supported-
operations (accessed on 18 August 2021). [CrossRef]

38. Capra, M.; Maurizio, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An updated survey of efficient hardware
architectures for accelerating deep convolutional neural networks. Future Internet 2020, 12, 113. [CrossRef]

39. Véstias, M.P. A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms 2019, 12, 154.
[CrossRef]

http://dx.doi.org/10.3390/designs3030032
http://dx.doi.org/10.3390/s130911842
http://dx.doi.org/10.3390/s150819487
http://dx.doi.org/10.3390/app11062646
http://dx.doi.org/10.3390/rs13030527
http://dx.doi.org/10.1109/LSENS.2018.2882642
http://dx.doi.org/10.1109/ACCESS.2019.2938725
http://dx.doi.org/10.1109/JPROC.2019.2920341
http://dx.doi.org/10.3390/s21020444
http://www.ncbi.nlm.nih.gov/pubmed/33435143
http://dx.doi.org/10.3390/s20226441
http://dx.doi.org/10.3390/s20185240
http://www.ncbi.nlm.nih.gov/pubmed/32937865
http://dx.doi.org/10.3390/app10144735
https://coral.ai/docs/edgetpu/models-intro/#supported-operations
https://coral.ai/docs/edgetpu/models-intro/#supported-operations
http://dx.doi.org/10.3390/fi12070113
http://dx.doi.org/10.3390/a12080154
http://dx.doi.org/10.1145/3065386

Sensors 2021, 21, 7298 27 of 28

40. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90.

41. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
43. Fan, F.-L.; Xiong, J.; Li, M.; Wang, G. On interpretability of artificial neural networks: A survey. IEEE Trans. Radiat. Plasma Med.

Sci. 2021.
44. Shahroudnejad, A. A survey on understanding, visualizations, and explanation of deep neural networks. arXiv 2021,

arXiv:2102.01792. [CrossRef]
45. Véstias, M.P. Deep learning on edge: Challenges and trends. Smart Syst. Des. Appl. Chall. 2020, 23–42. [CrossRef]
46. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge intelligence: The confluence of edge computing and artificial

intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]
47. Chen, J.; Ran, X. Deep Learning with Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
48. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing and deep learning: A

comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
49. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.

2019, 50, 3668–3681.
50. Kastratia, M.; Bibaa, M. A State-of-the-Art Survey of Advanced Optimization Methods in Machine Learning RTA-CSIT 2021:

Tirana, Albania. In Proceedings of the 4th International Conference on Recent Trends and Applications in Computer Science and
Information Technology, Tirana, Albania, 21–22 May 2021.

51. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

52. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520.

53. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

54. Tan, M.; Le, Q.V. Mixconv: Mixed depthwise convolutional kernels. arXiv 2019, arXiv:1907.09595.
55. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

56. Yu, T.; Zhu, H. Hyper-parameter optimization: A review of algorithms and applications. arXiv 2020, arXiv:2003.05689.
57. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
58. Siems, J.N.; Klein, A.; Archambeau, C.; Mahsereci, M. Dynamic Pruning of a Neural Network via Gradient Signal-to-Noise Ratio.

In Proceedings of the 8th ICML Workshop on Automated Machine Learning (AutoML), Virtual, 23–24 July 2021.
59. Meng, F.; Cheng, H.; Li, K.; Luo, H.; Guo, X.; Lu, G.; Sun, X. Pruning filter in filter. arXiv 2020, arXiv:2009.14410.
60. Liebenwein, L.; Baykal, C.; Carter, B.; Gifford, D.; Rus, D. Lost in pruning: The effects of pruning neural networks beyond test

accuracy. In Proceedings of Machine Learning and Systems 3; 2021. Available online: https://proceedings.mlsys.org/paper/2021
(accessed on 20 October 2021).

61. Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; van Baalen, M.; Blankevoort, T. A White Paper on Neural Network
Quantization. arXiv 2021, arXiv:2106.08295.

62. Zhao, R.; Hu, Y.; Dotzel, J.; de Sa, C.; Zhang, Z. Improving neural network quantization without retraining using outlier
channel splitting. In Proceedings of the International Conference on Machine Learning, PMLR, Beach, CA, USA, 9–15 June 2019;
pp. 7543–7552.

63. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2704–2713.

64. Neill, J.O. An overview of neural network compression. arXiv 2020, arXiv:2006.03669.
65. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A survey of model compression and acceleration for deep neural networks. arXiv 2017,

arXiv:1710.09282.
66. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
67. Weiß, J.; Pérez, R.; Biebl, E. Improved people counting algorithm for indoor environments using 60 GHz FMCW radar. In

Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6.
68. Aydogdu, C.Y.; Hazra, S.; Santra, A.; Weigel, R. Multi-modal cross learning for improved people counting using short-range

FMCW radar. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 27 April–1 May
2020; pp. 250–255. [CrossRef] [PubMed]

69. Thi Phuoc Van, Nguyen, Tang, L.; Demir, V.; Hasan, S.F.; Minh, N.D.; Mukhopadhyay, S. Microwave radar sensing systems for
search and rescue purposes. Sensors 2019, 19, 2879. [CrossRef] [PubMed]

70. Turppa, E.; Kortelainen, J.M.; Antropov, O.; Kiuru, T. Vital sign monitoring using FMCW radar in various sleeping scenarios.
Sensors 2020, 20, 6505.

http://dx.doi.org/10.1109/TRPMS.2021.3066428
http://dx.doi.org/10.4018/978-1-7998-2112-0.ch002
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/TCYB.2019.2950779
https://proceedings.mlsys.org/paper/2021
http://dx.doi.org/10.3390/s19132879
http://www.ncbi.nlm.nih.gov/pubmed/31261726
http://dx.doi.org/10.3390/s20226505
http://www.ncbi.nlm.nih.gov/pubmed/33202567

Sensors 2021, 21, 7298 28 of 28

71. Wu, Q.; Zhao, D. Dynamic hand gesture recognition using FMCW radar sensor for driving assistance. In Proceedings of the
2018 IEEE 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20
October 2018; pp. 1–6. [CrossRef] [PubMed]

72. Son, Y.-S.; Sung, Hy.; Heo, S.W. Automotive frequency modulated continuous wave radar interference reduction using per-vehicle
chirp sequences. Sensors 2018, 18, 2831. [CrossRef]

73. Lin, J., Jr.; Li, Yu.; Hsu, We.; Lee, T. Design of an FMCW radar baseband signal processing system for automotive application.
SpringerPlus 2016, 5, 1–16. [CrossRef]

74. Zhang, Z.; Tian, Z.; Zhou, M. Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor. IEEE Sens. J.
2018, 18, 3278–3289. [CrossRef]

75. Ahmed, S.; Cho, S.H. Hand gesture recognition using an IR-UWB radar with an inception module-based classifier. Sensors 2020,
20, 564.

76. Molchanov, P.; Gupta, S.; Kim, K.; Pulli, K. Multi-sensor system for driver’s hand-gesture recognition. In Proceedings of the 2015
11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8
May 2015; Volume 1, pp. 1–8. [CrossRef]

77. Lien, J.; Gillian, N.; Karagozler, M.E.; Amihood, P.; Schwesig, C.; Olson, E.; Raja, H.; Poupyrev, I. Soli: Ubiquitous gesture sensing
with millimeter wave radar. ACM Trans. Graph. (TOG) 2016, 35, 1–19.

78. Chmurski, M.; Zubert, M. Novel Radar-based Gesture Recognition System using Optimized CNN-LSTM Deep Neural Network
for Low-power Microcomputer Platform. In Proceedings of the ICAART, Online, 4–6 February 2021; pp. 882–890. [CrossRef]

79. Chmurski, M.; Zubert, M.; Bierzynski, K.; Santra, A. Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based
Gesture Recognition. IEEE Access 2021, 9, 74406–74421.

80. Manganaro, F.; Pini, S.; Borghi, G.; Vezzani, R.; Cucchiara, R. Hand gestures for the human-car interaction: The briareo dataset. In
Proceedings of the International Conference on Image Analysis and Processing, Trento, Italy, 9–13 September 2019; Springer:
Cham, Switzerland, 2019; pp. 560–571.

81. Liu, L.; Shao, L. Learning discriminative representations from RGB-D video data. In Proceedings of the Twenty-third International
Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013.

82. Escalera, S.; Baró, X.; Gonzalez, J.; Bautista, M.A.; Madadi, M.; Reyes, M.; Ponce-López, V.; Escalante, H.J.; Shotton, J.; Guyon, I.
Chalearn looking at people challenge 2014: Dataset and results. In Proceedings of the European Conference on Computer Vision,
Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 459–473.

83. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,
arXiv:1212.0402.

84. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A large video database for human motion recognition. In
Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2556–2563.
[CrossRef]

85. Wang, Y.; Ren, A.; Zhou, M.; Wang, W.; Yang, X. A novel detection and recognition method for continuous hand gesture using
fmcw radar. IEEE Access 2020, 8, 167264–167275.

86. Wang, S.; Song, J.; Lien, J.; Poupyrev, I.; Hilliges, O. Interacting with soli: Exploring fine-grained dynamic gesture recognition in
the radio-frequency spectrum. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo,
Japan, 16–19 October 2016; pp. 851–860. [CrossRef]

87. Ritchie, M.; Capraru, R.; Fioranelli, F. Dop-NET: A micro-Doppler radar data challenge. Electron. Lett. 2020, 56, 568–570.
88. Ritchie, M.; Jones, A.M. Micro-Doppler gesture recognition using Doppler, time and range based features. In Proceedings of the

2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6.
89. Trotta, S.; Weber, D.; Jungmaier, R.W.; Baheti, A.; Lien, J.; Noppeney, D., Tabesh, M.; Rumpler, C.; Aichner, M.; Albel, S.; et al.

SOLI: A Tiny Device for a New Human Machine Interface. In Proceedings of the 2021 IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; Volume 64, pp. 42–44.

90. Chudnikov, V.V.; Shakhtarin, B.I.; Bychkov, A.V.; Kazaryan, S.M. DOA Estimation in Radar Sensors with Colocated Anten-
nas. In Proceedings of the IEEE 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications
(SYNCHROINFO), Svetlogorsk, Russia, 1–3 July 2020; pp. 1–6.

http://dx.doi.org/10.3390/s18092831
http://www.ncbi.nlm.nih.gov/pubmed/30150581
http://dx.doi.org/10.1186/s40064-015-1583-5
http://dx.doi.org/10.1109/JSEN.2018.2808688
http://dx.doi.org/10.3390/s20020564
http://dx.doi.org/10.1145/2897824.2925953
http://dx.doi.org/10.1109/ACCESS.2021.3081353
http://dx.doi.org/10.1109/ACCESS.2020.3023187
http://dx.doi.org/10.1049/el.2019.4153

	Introduction
	Related Works
	System Description and Implementation
	The General Overview of the Proposed Framework
	Radar
	Radar Signal Model
	Radar Signal Processing
	Range Doppler Image Generation
	Angle Estimation
	Dataset Generation

	Gesture Vocabulary
	Experimental Setup

	Deep Learning Classifier
	CNN Architecture
	Radar Edge Network
	Depthwise Separable Convolutions
	Depthwise Expansion Module
	Proposed Classifier

	Edge TPU Deployment

	Performance Evaluation
	Classification Accuracy
	Comparison with Existing Techniques

	Conclusions
	References

