Daugavet property in tensor product spaces
Identificadores
URI: http://hdl.handle.net/10481/70396Metadatos
Mostrar el registro completo del ítemEditorial
Cambridge University Press
Materia
Daugavet property Tensor product spaces Octahedral norms
Fecha
2019-03-05Referencia bibliográfica
Published version: Rueda Zoca, A., Tradacete, P., & Villanueva, I. (2021). DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES. Journal of the Institute of Mathematics of Jussieu, 20(4), 1409-1428. doi:[10.1017/S147474801900063X]
Patrocinador
MECD (Spain) FPU2016/00015; Spanish Government PGC2018-093794-B-I00; Junta de Andalucia A-FQM-484-UGR18 FQM-0185; MINECO (Spain) MTM2016-76808-P MTM2016-75196-P MTM2017-88385-P; Severo Ochoa Programme for Centres of Excellence in RD SEV-2015-0554; QUITEMAD+-CM S2013/ICE-2801Resumen
We study the Daugavet property in tensor products of Banach
spaces. We show that L1(μ)b
"L1(ν) has the Daugavet property
when μ and ν are purely non-atomic measures. Also, we show that
Xb
Y has the Daugavet property provided X and Y are L1-preduals
with the Daugavet property, in particular spaces of continuous functions
with this property. With the same tecniques, we also obtain consequences
about roughness in projective tensor products as well as the
Daugavet property of projective symmetric tensor products.