Uniform circular motion in General Relativity: Existence and extendibility of the trajectories
Identificadores
URI: http://hdl.handle.net/10481/70138Metadata
Show full item recordDate
2017Referencia bibliográfica
De la Fuente, D., Romero Sarabia, A., Torres Villarroya, P.J. Uniform circular motion in General Relativity: Existence and extendibility of the trajectories. Classical Quantum Gravity, vol. 34, no. 12, pp. 125016, 23, 2017
Abstract
The notion of uniform circular motion in a general spacetime is introduced as a particular
case of a planar motion. The initial value problem of the corresponding di erential
equation is analysed in detail. Geometrically, an observer which obeys a uniform circular
motion is characterized as a Lorentzian helix. The completeness of its inextensible
trajectories is studied in Generalized Robertson-Walker spacetimes and in a relevant family
of pp-wave spacetimes. The results may be physically interpreted saying that, under
reasonable assumptions, a uniformly circular observer lives forever in these spacetimes,
providing the absence of the singularities de ned by these timelike curves.