
Uniform circular motion in General Relativity: Existence and

extendibility of the trajectories

Daniel de la Fuente?, Alfonso Romero† and Pedro J. Torres? ∗

? Departamento de Matemática Aplicada,
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Abstract

The notion of uniform circular motion in a general spacetime is introduced as a partic-
ular case of a planar motion. The initial value problem of the corresponding differential
equation is analysed in detail. Geometrically, an observer which obeys a uniform circu-
lar motion is characterized as a Lorentzian helix. The completeness of its inextensible
trajectories is studied in Generalized Robertson-Walker spacetimes and in a relevant fam-
ily of pp-wave spacetimes. The results may be physically interpreted saying that, under
reasonable assumptions, a uniformly circular observer lives forever in these spacetimes,
providing the absence of the singularities defined by these timelike curves.
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1 Introduction

Uniform circular motion has been widely studied in Special Relativity (see, for instance, [8]).
Relevant physical phenomena and paradoxes, usually related with the Thomas precession,
have motivated its study, and its interest is still present (see, for instance [20] for an intuitive
introduction). The usual approach consists in setting a family of inertial observers, one of
them is considered ‘the center’. Thus, an observer is said that describes a uniform circular
motion with respect to the fixed ‘center’ if the trajectory measured by that family of inertial
observers is circular and its angular velocity is constant for them. Others approaches have
been done using suitable Frenet equations [10], [11].

∗The first and third authors are partially supported by Spanish MINECO and ERDF project MTM2014-
52232-P. The second author by Spanish MINECO and ERDF project MTM2013-47828-C2-1-P.



Specific motions which may be seen as very particular cases of uniform circular motions
have been previously considered in relevant relativistic models with some rotational symme-
try, as Schwarzschild, Reissner-Nordström and Kerr spacetimes [14, Ch. 25]. Each of these
spacetimes has a remarkable family of observers with a similar role that the inertial observers
in Minkowski spacetime. An observer that is placed on the surface of the star or the black
hole (according the case) and at rest with respect to it, is considered the center of the circular
trajectories. The uniform circular observer describes a circle with respect to the special fixed
family of observers and the measured angular velocity is constant. The analysis of this kind
of motions has a recognized physical and technological interest because they correspond to
the orbits of some artificial satellites, planets or stars (see, for instance, [12]).

We are interested here in introducing a definition of uniform circular motion in a general
spacetime, involving only the physical observable quantities measured by the proper observer.
In order to determine the inherent kinematic state of an observer we will focus on its proper
acceleration. In other words, we will give an ‘intrinsic’ definition of uniform circular motion,
without considering an external family of distinguished observers for which the motion de-
scribes has a circular trajectory or not. Note, in addition, that the existence of such a family
of observers is not guaranteed in a generic spacetime. Of course, our definition will agree with
the standard notion in previously quoted cases.

Intuitively, an observer is able to detect its proper acceleration by using a giroscope or,
more generally, an accelerometer. An accelerometer may be thought as a sphere in whose
center there is a small ball which is supported from elastic radii to the sphere surface. If
a free falling observer carries such an accelerometer, then it will notice that the small ball
remains just at the center. Whereas the ball will be displaced if the observer obeys an
accelerated motion. For instance, a uniform accelerated motion may be recognised from a
constant displacement of the small ball [4]. This idea has the advantage that may be used
independently if the spacetime is relativistic or not. Thus, it would be natural that if an
observer checks that the small ball describes a plane uniform rotation, then it believes that
it obeys a uniform circular motion.

The first challenge we have to face is to state a notion of ‘planar’ motion in an arbitraty
spacetime. Classically, a motion is said to be planar when the projection of its space-time
trajectory on the absolute Euclidean space is contained in a plane. Equivalently, its proper
acceleration is contained in the same plane at any instant. This alternative notion may be
extended to any spacetime. Obviously, as it happens in Classical Mechanics, a uniform circular
motion should be a planar motion. The subtle problem in Relativity consists in to give sense
to the sentence the same plane forever. This is well done making use of the Fermi-Walker
connection of each observer (Definition 1).

Our procedure lies in the realm of modern Lorentzian geometry and, as far as we know,
is new in our approach (compare with [11]). In order to do that, recall that a particle of
mass m > 0 in a spacetime (M, 〈 , 〉) is a curve γ : I −→M , such that its velocity γ ′ satisfies
〈γ ′, γ ′〉 = −m2 and it is future pointing. A particle with m = 1 is called an observer (see, for

instance, [17]). The covariant derivative of γ ′,
Dγ ′

dt
, is its (proper) acceleration, which may

be seen as a mathematical translation of the values measured by the accelerometer.

Assume the particle γ obeys a planar motion. In order to arrive to a suitable notion
of uniform circular motion, we will require that the modulus of its acceleration remains
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unchanged, i.e., ∣∣∣Dγ ′
dt

∣∣∣2 = constant.

On the other hand, we need a connection along γ that permits to compare spatial directions
at different instants of the life of γ, i.e., we need such a connection to compute how the proper
acceleration of γ changes. In General Relativity this connection is known as the Fermi-Walker
connection of γ (see Section 2 for more details). Thus, using the corresponding Fermi-Walker

covariant derivative
D̂

dt
, if a particle obeys a uniform circular (UC) motion, it is also necessary,

∣∣∣D̂
dt

(
Dγ ′

dt

) ∣∣∣2 = constant,

i.e., the modulus of the change of its acceleration should be constant (Section 2). We will
arrive to the main notion of Definition 3 collecting suitable the three previous conditions.

On the other hand, UC motions appear naturally in any spacetime, for instance they arise
from a dynamical point of view. Considering an electrically charged particle with nonzero rest
mass (γ(t),m, q) in presence of an electromagnetic field F , then the dynamics of the particle
is completely described by the well-known Lorentz force equation (see, for instance, [17, Def.
3.8.1]),

m
Dγ ′

dt
= q F̃ (γ ′),

where F̃ is the (1,1)-tensor field metrically equivalent to the closed 2-form F . Now, let us
consider in Minkowski spacetime L4 the particular electromagnetic field,

F = 2B0 dx ∧ dy,

where B0 > 0 is a constant and (t, x, y, z) are the standard coordinates of L4. The family
of inertial observers ∂/∂t measures a uniform magnetic field with modulus B0 and pointing
towards ∂/∂z (and zero electric field) for F . Now, the particle γ obeys a UC motion, and its
trajectory is expressed as [17, Prop. 3.8.2],

γ(τ) = p +
(√

1 +R2w2mτ,R cos(wmτ + ϑ), R sin(wmτ + ϑ), 0
)
,

with w = qB0

m ∈ R, p ∈ L4, R > 0 and ϑ ∈ R, whenever the initial velocity of particle with
respect to the family of inertial observers lies in the plane xy [17, p. 88].

Next, the paper is organized as follows. In Section 2 several mathematical preliminaries
are introduced to arrive to the notion of UC observer (Definition 3). Section 3 is devoted to
expose how a UC observer can be seen as a Lorentzian helix in a general spacetime (Equation
3.1). The corresponding differential system and the associated initial value problem are
analysed in detail in Section 4. Later, we use this result to characterize each UC observer as
a solution of a fourth-order differential equation (Proposition 19). A representation of any
UC observer is given in Section 5. Section 6 is dedicated to characterize geometrically UC
observers as the projections on the spacetime of the integral curves of a certain vector field G
defined on a suitable fiber bundle over the spacetime (Lemma 6.1). Using G, the completeness
of inextensible UC motions is analysed in the search of geometric assumptions which assure
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that inextensible UC observers do not disappear in a finite proper time. This technique
is applied to spacetime which admit a certain timelike symmetry. In fact, we obtain that
any UC observer in a Generalized Robertson-Walker spacetime can be extended whenever
its worldline lies in a compact subset of the spacetime (Theorem 6.4). Finally, in Section
7, we prove the completeness of inextensible UC observers in an important class of pp-wave
spacetimes. In this case we make use of a different and more analytical approach (Theorem
7.3). In both cases, the absence of singularities of this kind is found.

2 The notion of uniform circular motion

Consider a spacetimeM , i.e., an n(≥ 2)−dimensional manifold endowed with a time orientable
Lorentzian metric 〈 , 〉 which we agree to have signature (−,+, ...,+), and with a fixed time
orientation. Points of M as called events and an observer in M is a (smooth) curve γ : I −→
M , I an open interval of R (0 ∈ I), such that 〈γ ′(t), γ ′(t)〉 = −1 and γ ′(t) lies in the future
time cone in Tγ(t)M for all t ∈ I. In brief, γ ′(t) is a future pointing unit timelike vector for
any proper time t of γ.

At each event γ(t), the tangent space Tγ(t)M linearly splits as

Tγ(t)M = Tt ⊕Rt,

where Tt := Span{γ ′(t)} and Rt := T⊥t . Clearly, Tt is a negative definite line in Tγ(t)M
and Rt is a spacelike hyperplane of Tγ(t)M . For n = 4, the 3-dimensional subspace Rt
may be interpreted as the instantaneous physical space observed by γ at the instant t of its
clock. Consequently, vectors in Rt represent observable quantities for γ at t. Note that the

acceleration vector field
Dγ ′

dt
satisfies

Dγ ′

dt
(t) ∈ Rt, for any t. In fact, it is observed by γ

whereas the velocity vector field γ ′ is not observable by γ.

In order γ compares v1 ∈ Rt1 with v2 ∈ Rt2 , for t1 < t2 and |v1| = |v2|, it could use the
parallel transport defined by the Levi-Civita covariant derivative along γ,

P γt1,t2 : Tγ(t1)M −→ Tγ(t2)M.

However, this linear isometry does not satisfy P γt1,t2(Rt1) = Rt2 , in general. This is a serious
inconvenience. To avoid it, the observer can use a more subtle mathematical tool. In fact,
recall that γ possesses a (private) connection, called its Fermi-Walker connection, which is
defined as follows [17, p. 51]. Consider the Levi-Civita connection ∇ associated to the
Lorentzian metric of spacetime. It induces a connection along each γ : I −→M such that the
corresponding covariant derivative is the usual covariant derivative of vector fields Y ∈ X(γ),

namely,
DY

dt
(t) = ∇γ ′(t)Ỹ , where Ỹ is a local extension of Y on an open neighbourhood of

each event experimented by γ(t) in M .

For Y ∈ X(γ), denote by Y T
t , Y

R
t the orthogonal projections of Yt on Tt and Rt, respec-

tively, i.e.,
Y T
t = −〈Yt, γ ′(t)〉 γ ′(t) and Y R

t = Yt − Y T
t .

Clearly, we have Y T , Y R ∈ X(γ). According to [17, Prop. 2.2.1] the Fermi-Walker connection
of γ is the unique connection ∇̂ along γ which satisfies

∇̂XY =
(
∇XY T

)T
+
(
∇XY R

)R
,
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for any X ∈ X(I) and Y ∈ X(γ), being ∇ the induced connection on γ from the Levi-Civita
connection of M .

Now denote by D̂/dt the covariant derivative corresponding to ∇̂. Then, it is not difficult
to prove the following relationship with the Levi-Civita covariant derivative [17, Prop. 2.2.2],

D̂Y

dt
=
DY

dt
+ 〈γ ′, Y 〉 Dγ

′

dt
−
〈
Dγ ′

dt
, Y

〉
γ ′, (1)

for any Y ∈ X(γ). Clearly, we have
D̂

dt
=
D

dt
if and only if γ is a geodesic, i.e., the observer

is free falling.

In addition, the following Leibnitz type rule holds,

d

dt
〈X ,Y 〉 =

〈D̂X
dt

, Y
〉

+
〈
X ,

D̂Y

dt

〉
, (2)

for any X,Y ∈ X(γ).

Associated to the Fermi-Walker covariant derivative along γ there exists a parallel trans-
port

P̂ γt1,t2 : Tγ(t1)M −→ Tγ(t2)M,

which is a linear isometry and satisfies

P̂ γt1,t2(Rt1) = Rt2 .

Therefore, given v1 ∈ Rt1 and v2 ∈ Rt2 , with t1 < t2 and |v1| = |v2|, the observer γ may
consider P̂ γt1,t2(v1) instead of v1, with the advantage that P̂ γt1,t2(v1) may be compared with v2
(see also [14, Sec. 6.5]).

Now we introduce the crucial concept of ‘planar motion’ to make precise when an observer
considers that it is moving along a plane. Intuitively, an observer will say that its motion
is planar when the small ball of its accelerometer moves along a constant plane. In the
mathematical translation of this intuitive idea, the main difficulty lies in what is the meaning
of a ‘constant plane’ relative to the observer. For this purpose we will use the Fermi-Walker
connection exposed above.

Definition 1 An observer γ : I −→M obeys a planar motion if for some t0 ∈ I, there exists
an observable plane Πt0 ⊂ Rt0 ⊂ Tγ(t0)M , such that

P̂ γt,t0

(
Dγ ′

dt
(t)

)
∈ Πt0 (3)

for any t ∈ I.

Intuitively,
Dγ ′

dt
corresponds to the displacement of the small ball of the accelerometer,

and D̂
dt

(
Dγ ′

dt

)
may be seen as the velocity of the ball. Whenever both vectors are linearly

independent, both directions define the observable 2-plane Πt0 .
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As direct consequence of the definition, using the equality

D̂

dt

(
Dγ ′

dt

)
(t0) = lim

ε→0

1

ε

[
P̂ γt0+ε,t0

(
Dγ ′

dt
(t0 + ε)

)
− Dγ ′

dt
(t0)

]
,

gives that the vector
D̂

dt

(
Dγ ′

dt

)
(t0) is also in Πt0 . Indeed, if γ is not in an unchanged

direction motion at a neighbourhood of the instant t0, in the terminology of [5], then the
plane Πt0 is generated by the proper acceleration of the observer and the variation which it
measures, i.e.,

Πt0 = span

{
Dγ

dt
(t0) ,

D̂

dt

(
Dγ ′

dt

)
(t0)

}
.

In this case, we may define the following family of 2-planes along γ

Πt := span

{
P̂ γt0,t

(
Dγ

dt
(t0)

)
, P̂ γt0,t

(
D̂

dt

(
Dγ

dt

)
(t0)

)}
⊂ Rt0 . (4)

Observe that this family of planes is Fermi-Walker parallel in the sense of the following
definition.

Definition 2 Given an observer γ : I −→ M in the spacetime M , a family of planes along
γ, {Πt}t∈I , is said to be Fermi-Walker parallel if for any t1, t2 ∈ I and for any vector v ∈ Πt1 ,
the following relation holds

P̂ γt1,t2(v) ∈ Πt2 .

In addition, the previous family of planes (4) satisfies the following property.

Lemma 2.1 For any t, t1 ∈ I, we have

P̂ γt,t1

(
Dγ ′

dt
(t)

)
∈ Πt1 .

Proof. Taking the inverse mapping of P̂ γt,t0 in (3), we have that there exist a, b ∈ R such that

Dγ

dt
(t) = a P̂ γt0,t

(
Dγ

dt
(t0)

)
+ b P̂ γt0,t

(
D̂

dt

(
Dγ

dt

)
(t0)

)
.

Now, the desired relation follows by taking P̂ γt,t1 in both members of the previous equality.
�

It should be pointing out that the family {Πt}t∈I satisfies the previous property, but
it is not unique in general (a generically planar motion may be a free falling motion from
some instant). However, if the observer γ is not an unchanged direction observer [5], i.e.,

if
{Dγ
dt

(t),
D̂

dt

(
Dγ

dt

)
(t)
}

are linearly independent for any t ∈ I, then the only family of

2-planes satisfying Lemma 2.1 is {Πt}t∈I .
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Now we will introduce a uniform circular (UC) motion as a very particular case of planar
motion. Intuitively, a UC observer will see that the small ball of its accelerometer is rotating
with constant angular velocity, describing a circular trajectory. Hence, the velocity of the

ball for the observer,
D̂

dt

(
Dγ ′

dt

)
, will have a constant modulus. Motivated by these intuitive

ideas, we are in a position to give an accurately definition.

Definition 3 An observer γ : I −→M which satisfies a planar motion is said to obey a UC
motion if ∣∣∣Dγ ′

dt

∣∣∣2 = a2 and
∣∣∣D̂
dt

(
Dγ ′

dt

) ∣∣∣2 = a2w2, (5)

where the constants a,w satisfy a,w > 0 and a < w.

Here a is de modulus of the acceleration, and w corresponds to the angular velocity that
the observer perceives. Therefore, motivated from the classical relation between the radius
R, the angular velocity w and the centripetal acceleration a on a circular motion,

a = w2R,

a UC observer will measure a uniform rotation with frequency w
2π and ‘radius’ equal to R :=

a/w2. We emphasize that this quantity R does not represent a real observable distance in
general. It is only the radius of the trajectory which the UC observer assumes, using the
classical intuition, from the evolution of its acceleration. The assumption a < w is imposed
to exclude other different kind of motions, as we will discuss it at the end of Section 5.

Remark 2.2 Note that if a = 0 is permited, we would recover the definition of a free falling
observer. Moreover, when a > 0, if w = 0 is permited, we would obtain the definition of a
uniform accelerated observer [4]. Observe that, in this case, the trajectory measured by the
observer may be thought with infinite ‘radius’, i.e., the observer obeys a rectilinear motion
[5].

Naturally, in order to determine a UC observer trajectory, it is necessary to know the
initial observable 2-plane, the initial spin sense and the initial values of the position, 4-
velocity and proper acceleration. In an n(≥ 3)-dimensional spacetime, the initial 2-plane can
be determined by means of n − 3 observable directions u4, · · · , un ∈ γ ′(0)⊥, orthogonal to

the initial acceleration
Dγ ′

dt
(0). So, the vector

D̂

dt

(
Dγ ′

dt

)
(0) will point towards the unique

observable direction which is orthogonal to
Dγ ′

dt
(0) and u4, · · · , un. From equation (5), the

modulus of the vector
D̂

dt

(
Dγ ′

dt

)
(0) is also known, and it is equal to aw. However, the initial

spin sense is needed to determine the sense of that vector.

The initial plane Π0 is given by

Π0 = span

{
Dγ ′

dt
(0),

D̂

dt

(
Dγ ′

dt

)
(0)

}
.
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We consider the following unit vectors, related with the initial values of the problem,

u1 = γ ′(0), u2 =
1

a

Dγ ′

dt
(0), u3 =

1

aw

D̂

dt

(
Dγ ′

dt

)
(0),

and consider the following Fermi-Walker parallel vector fields along γ,

e4(t), · · · , en(t)

satisfying the initial conditions ei(0) = ui, for each 4 ≤ i ≤ n. Now, the family of Fermi-
Walker parallel planes (4), corresponding to the UC observer γ is given by

Πt = span{P̂ γ0,t(u2), P̂
γ
0,t(u3)} =

(
span{P̂ γ0,t(u1), e4(t), · · · , en(t)}

)⊥
⊂ Rt.

Remark 2.3 Note that, in the physically relevant case n = 4, we have

e4(t) =
1

a2w

Dγ ′

dt
× D̂

dt

(
Dγ ′

dt

)
,

where × denotes the natural cross product defined in Rt.

From the previous discussion we can state the following initial value equations for a UC
observer with ‘frequency’ w

2π and ‘radius’ R = a
w2 , which is expressed as

〈γ ′ , γ ′〉 = −1, (6)∣∣∣Dγ ′
dt

∣∣∣2 = a2, (7)

∣∣∣D̂
dt

(
Dγ ′

dt

) ∣∣∣2 = a2w2, (8)

D̂ei
dt

= 0 for 4 ≤ i ≤ n, (9)〈
Dγ ′

dt
, ei

〉
= 0 for 4 ≤ i ≤ n, (10)

under the initial conditions

γ(0) = p, γ ′(0) = u1,
Dγ ′

dt
(0) = a u2,

D̂

dt

(
Dγ ′

dt

)
(0) = aw u3, (11)

ei(0) = ui for 4 ≤ i ≤ n,

where, p is an event in the n-dimensional spacetime M .

Note that (10) automatically implies that〈
D̂

dt

(
Dγ ′

dt

)
(t) , ei(t)

〉
= 0 for 4 ≤ i ≤ n, t ∈ I.
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The local existence and uniqueness of this initial problem is not yet guaranteed because it
is not possible write it in the normal form (therefore the classical Picard-Lindeloff Theorem
can not be applied). On the other hand, the initial condition are imposed to the third
derivative, in spite of the system is of third order. However, in Section 4 we will prove that
system (6)-(11) has a unique inextensible solution.

3 UC motion as a Lorentzian helix

In this section we analyse the UC motion from a more geometric viewpoint. First, we proceed
to find the Frenet equations of each UC observer.

Let γ : I −→M be a UC observer with angular velocity w and radius R = a
w2 . We define

the following three vector fields along γ, which are orthonormal from equations (2) and (5),

e1(t) = γ ′(t),

e2(t) =
1

a

Dγ ′

dt
(t),

e3(t) =
1

aw

D̂

dt

(
Dγ ′

dt

)
(t).

Let {u4, · · · , un} be n− 3 orthonormal vectors in Tγ(0)M , such that,

{e1(0), e2(0), e3(0), u4, . . . , un}

is an orthogonal basis of Tγ(0)M . Consider the Fermi-Walker parallel vector fields along γ
starting at ui,

ei(t) = P̂ γ0,t(ui), for 4 ≤ i ≤ n.

Since a UC motion is a planar motion, the 2-plane Πt is orthogonal to the subspace
generated by {P̂ γ0,t(ui)}4≤i≤n. So vector fields {ej(t)}1≤j≤n are orthonormal at every instant
t ∈ I.

Now, we are in a position to obtain the Frenet equations. A direct computation give us

De1
dt

= a e2.

On the other hand,

De2
dt

=
1

a

[
D̂

dt

(
Dγ ′

dt

)
+ a2γ ′

]
= a e1 + w e3.

Taking into account that γ is a UC observer, we obtain〈De3
dt

, e1

〉
=

1

aw

〈D̂
dt

(
D̂

dt

(
Dγ ′

dt

))
, γ ′
〉

= 0,

and 〈De3
dt

, e2

〉
=

1

a2w

[
d

dt
〈D̂
dt

(
Dγ ′

dt

)
,
Dγ ′

dt
〉 −

∣∣∣D̂
dt

(
Dγ ′

dt

) ∣∣∣2] = −w.

9



Hence, we get

De3
dt

=
1

aw

D̂

dt

(
D̂

dt

(
Dγ ′

dt

))
= −w e2.

Finally, for 4 ≤ i ≤ n,

Dei
dt

=
D̂ei
dt
− 〈γ ′ , ei〉

Dγ ′

dt
+ 〈Dγ

′

dt
, ei〉γ ′ = 0.

Summarizing, the Frenet equations corresponding to a UC observer are

De1
dt

= a e2, (12)

De2
dt

= a e1 + w e3, (13)

De3
dt

= −w e2, (14)

Dei
dt

= 0 for 4 ≤ i ≤ n. (15)

Therefore, Frenet equations gives that a UC observer is a Lorentzian helix, i.e., a unit
timelike curve with constant curvature and torsion, and vanishing higher order curvatures
identically zero (see, for instance, [13]).

Conversely, assume Frenet system of equations (12)− (15) holds true for γ with the initial
conditions (11). Note that no information is obtained from (12). On the other hand, Equation
(13) can be written as

D̂

dt

(
Dγ ′

dt

)
=
D2γ ′

dt2
− a2 γ ′.

The relation between Fermi-Walker and Levi-Civita covariant derivatives given in (1), allows
us conclude (∣∣∣Dγ ′

dt

∣∣∣2 − a2) γ ′ =
〈
γ ′ ,

Dγ ′

dt

〉Dγ ′
dt

.

Multiplying this expression by
Dγ ′

dt
we get,

|γ ′|2 = −1 and
∣∣∣Dγ ′
dt

∣∣∣2 = a2,

which are the first two equations on the system (6)-(10). On the other hand, from (14) we
obtain the fourth-order equation,

D

dt

[
D2γ ′

dt2
+ (w2 − a2)γ ′

]
= 0.

Since we know that 〈Dγ
′

dt
, γ ′〉 = 0, from second Frenet equation, we conclude that

∣∣∣D̂
dt

(
Dγ ′

dt

) ∣∣∣2
is constant along γ. Now, from initial conditions (11), we get the second equation of (5).
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Finally, directly from definition of e(t), we deduce equations (9). As a consequence,

0 =
D̂ei
dt

= 〈ei , γ ′〉
Dγ ′

dt
− 〈Dγ

′

dt
ei〉γ ′,

and we obtain equations (10).

The previous arguments gives rise to the following result.

Proposition 3.1 An observer γ : I −→ M is a UC observer, with angular velocity w and
radius R = a

w2 , if and only if γ is a unit timelike Lorentzian helix, i.e., a curve with constant
curvature a and torsion w, while the rest of higher order curvatures are identically zero.

Remark 3.2 We note that, if the spacetime has constant sectional curvature, the reduction
of codimension Erbacher Theorem (see [6]) implies that the UC observers are contained in a
3-dimensional totally geodesic Lorentzian submanifold.

4 The associated Cauchy problem

Observe that Frenet equations (12)-(15) constitute a fourth order differential system for γ.
The associated initial value problem is

D̂

dt

(
Dγ ′

dt

)
=
D2γ ′

dt2
− a2 γ ′, (16)

D

dt

[
D2γ ′

dt2
+ (w2 − a2)γ ′

]
= 0, (17)

γ(0) = p, γ ′(0) = u1,
Dγ ′

dt
(0) = a u2,

D̂

dt

(
Dγ ′

dt

)
(0) = aw u3, (18)

where u1, u2, u3 ∈ TpM are orthogonal vectors satisfying |u1|2 = −1 and |u2|2 = |u3|2 = 1.

Since there are two different equations the existence and uniqueness of this problem is not
immediate. Now, we are going to prove that this initial problem is equivalent to the following
one, which clearly has a unique inextensible solution.

D

dt

[
D2γ ′

dt2
+ 〈γ ′ , Dγ

′

dt
〉Dγ

′

dt
+
(
w2 −

∣∣∣Dγ ′
dt

∣∣∣2)γ ′] = 0, (19)

γ(0) = p, γ ′(0) = u1,
Dγ ′

dt
(0) = a u2,

D̂

dt

(
Dγ ′

dt

)
(0) = aw u3, (20)

where u1, u2, u3 ∈ TpM satisfy the above conditions.

Taking into account (1), it is clear that a solution of (16)-(18) is a solution of (19)-(20).

For the converse, we only have to prove that |γ ′|2 and
∣∣Dγ ′
dt

∣∣2 are constant along γ.

11



Denote by x(t) := |γ ′|2 and y(t) :=
∣∣Dγ ′
dt

∣∣2. Then, the initial values are

x(0) = −1, x′(0) = x′′(0) = 0, y(0) = a2, y′(0) = y′′(0) = 0. (21)

Multiplying equation (19) by γ ′ and
Dγ ′

dt
, we obtain respectively,

2x′′′ − 1

2
y′′ +

[
4x′2 + (w2 − y)x

]
− 1

2
y′ − 2w2x′ = 0, (22)

and ∣∣∣D2γ ′

dt2

∣∣∣2 =
1

2
y′′ + 2x′′y − x′y′ + w2y − y2 =

1

2
y′′ + f(x′, y, y′), (23)

where f(x′, y, y′) denotes the corresponding terms.

On the other hand, multiplying (19) by
D2γ ′

dt2
and using (23), we get

1

4
y′′′ +

1

2

(
f(x′, y, y′)

)′ − x′′y′ + x′y′′ +
1

2
yy′ + x′y′′ + x′f(x′, y, y′)− w2

2
y′ = 0. (24)

Equations (22) and (24), under the initial conditions (21), have a unique solution by the
classical Picard-Lindeloff Theorem. Since x(t) = −1 and y(t) = a2 satisfy this initial value
problem, we get the announced conclusion.

Previous results are picked up in the following proposition.

Proposition 4.1 The three following assertions are equivalent

(a) A curve γ in M is solution of (6)-(11).

(b) A curve γ in M is solution of (16)-(18).

(c) A curve γ in M is (the unique) solution of (19)-(20).

We can rewrite the equivalences as follows.

Corollary 4.2 There exists a unique inextensible UC observer in M for each initial data
(11).

5 A representation of the solutions

At this point, we remark that although Definition 3 has a clear physical meaning, (based
on how an observer obeying a uniform circular motion measures its proper acceleration), we
expose in the result below another characterization of the UC observers, useful to obtain
explicit solutions of the motion equation.

Proposition 5.1 Let M be an n(≥ 3)-dimensional spacetime, n ≥ 3, and let a, w be two
positive constants, a < w. Let us consider u1, u2, u3 ∈ TpM three orthogonal vectors such
that |u1|2 = −1 and |u2|2 = |u3|2 = 1, and consider n − 3 vectors {u4, · · · , un} ⊂ TpM

12



completing the previous three ones to an orthonormal basis of TpM . Then, the 4-velocity of
the only UC observer γ satisfying the initial conditions (18) satisfies the expression

γ ′(t) =
w√

w2 − a2
L(t) +

a√
w2 − a2

[
cos
(√

w2 − a2 t
)
M(t) + sin

(√
w2 − a2 t

)
N(t)

]
, (25)

being L,M,N , three unit (Levi-Civita) parallel vector fields along γ satisfying

L(0) = 1√
w2−a2 (wu1 + au3),

M(0) = −1√
w2−a2 (au1 + wu3),

N(0) = u2,

〈L(0) , ui〉 = 〈M(0) , ui〉 = 〈N(0) , ui〉 = 0 for 4 ≤ i ≤ n.

Proof. First, we check that if γ verifies (25) then it is a solution of (6)-(10). From assumptions
on L, M and N , a direct computation gives

Dγ ′

dt
(t) = a

(
− sin

(√
w2 − a2 t

)
M(t) + cos

(√
w2 − a2 t

)
N(t)

)
.

Then, by using the orthogonality of M and N , equation (7) is automatically satisfied. Anal-
ogously, after easy computations we get

D̂

dt

(
Dγ ′

dt

)
= − a2w√

w2 − a2
L− aw2

√
w2 − a2

(
cos
(√

w2 − a2 t
)
M + sin

(√
w2 − a2 t

)
N
)
,

and equation (8) holds. The equations (9) and (10) are satisfied because of assumptions on
L, M and N and their initial relations with the vectors u4, · · · , un. Moreover, the initial
conditions are straightforward satisfied.

For the converse, we only must take into account the uniqueness of inextensible solutions
of initial value problem (6)-(11).

�

Remark 5.2 By using the Levi-Civita parallel transport, we can express (25) as the following
first order integro-differential equation,

γ ′(t) =
1√

w2 − a2
[
wP γ0,t(v1) + a cos

(√
w2 − a2 t

)
P γ0,t(v2) + a sin

(√
w2 − a2 t

)
P γ0,t(u2)

]
,

|u1|2 = −1, |u2|2 = |u3|2 = 1, 〈u1, u2〉 = 〈u1, u3〉 = 〈u2, u3〉 = 0.

being v1 =
wu1 + au3√
w2 − a2

and v2 = −au1 + wu3√
w2 − a2

.

Note that expression (25) is only a representation of the solutions of (19). In fact, in order
to compute the parallel vector fields L(t), M(t) and N(t) for t > 0, if is necessary to know
the solution curve γ. However, formula (25) is interesting and it will be used in the analytical
study of the completeness of inextensible trajectories given in Section 6.

13



Example 5.3 Consider the 3-dimensional Minkowski spacetime M = L3 endowed with the
standard coordinate system (t, x, y). In this spacetime, every motion is obviously planar. A
UC observer, with frequency w

2π and ‘radius’ a
w2 , satisfying the initial conditions

γ(0) = (0,
a

w2 − a2
, 0), Dγ ′(0) =

( w√
w2 − a2

, 0,
a√

w2 − a2
)
,

Dγ ′

dτ
(0) = (0, −a, 0),

D̂

dτ

(Dγ ′
dτ

)
(0) =

( a2w√
w2 − a2

, 0,
aw2

√
w2 − a2

)
,

is given by the expression,

γ(τ) =
(
t(τ), x(τ), y(τ)

)
,

where

t(τ) =
wτ√
w2 − a2

, x(τ) =
a

w2 − a2
cos
(√

w2 − a2 τ
)
, y(τ) =

a

w2 − a2
sin
(√

w2 − a2).

The physical interpretation may be as follows. The UC observer measures acceleration
with constant modulus equal to a and angular velocity w. Thus, it induces that its radius is
R = a

w2 . However, the family of inertial observers which measure an initial velocity of the UC
observer equal to a

w , detect that it describes an uniform circular motion with acceleration a

but with lower angular velocity, equal to
√
w2 − a2. The radius of the observed trajectory by

these inertial observers is a
w2−a2 , which increases as w approximates to a.

We end this section discussing the condition a < w imposed in definition 3. A similar
procedure to the above one arrives to the following representation of the solution of (19)
whenever a > w holds.

γ ′(t) =
−w√
a2 − w2

L(t) +
a√

a2 − w2

[
cosh

(√
a2 − w2 t

)
M(t) + sinh

(√
a2 − w2 t

)
N(t)

]
,

being L,M,N ∈ X(γ), unit (Levi-Civita) parallel vector fields satisfying

L(0) = 1√
a2−w2

(wu1 + au3),

M(0) = −1√
a2−w2

(au1 + wu3),

N(0) = u2,

〈L(0) , ui〉 = 〈M(0) , ui〉 = 〈N(0) , ui〉 = 0 for 4 ≤ i ≤ n.

Observe that, for long values of proper time t, this motion approaches to a uniformly
accelerated motion [5, Th.2.1].

Analogously, if a = w holds, we have

γ ′(t) =

(
1 +

a2

2
t2
)
L(t) +

a2

2
t2M(t) + atN(t),

14



being L,M,N ∈ X(γ) as before and now satisfying

L(0) = u1,

M(0) = u3/a
2,

N(0) = u2/a,

〈L(0) , ui〉 = 〈M(0) , ui〉 = 〈N(0) , ui〉 = 0 for 4 ≤ i ≤ n.

In this case, for long times, such a observer approaches to a lightlike trajectory in an
accelerated way. In particular, in L3, we have that γ ′(τ) ≈ a2τ2

2 (∂t + ∂x) when τ is big
enough, which is far to any possible circular motion.

Both cases show that is not possible a suitable relativistic definition of uniform circular
motion with a ≥ w.

6 Completeness of the inextensible UC trajectories in space-
times with certain timelike symmetries

This section is devoted to the study of the completeness of the inextensible UC observers.
First of all, we are going to relate the solutions of equation (19) with the integral curves of a
certain vector field on a Stiefel type bundle on M (compare with [7, p. 6]).

Given a Lorentzian linear space E and a,w ∈ R, w > a > 0, denote by V a,w
n,3 (E) the

(n,3)-Stiefel manifold over E, defined by

V a,w
n,3 (E) =

{
(v1, v2, v3) ∈ E3 : |v1|2 = −1, |v2|2 = a2, |v3|2 = a2w2, 〈vi, vj〉 = 0, i 6= j

}
.

The (n,3)-Stiefel bundle over the spacetime M is then defined as follows,

V a,w
n,3 (M) =

⋃
p∈M
{p} × V a,w

n,3 (TpM).

Now we construct a vector field G ∈ X
(
V a,w
n,3 (M)

)
which is the key tool in the study of

completeness. Let (p, u1, au2, awu3) be a point of V a,w
n,3 (M) and f ∈ C∞

(
V a,w
n,3 (M)

)
. Let σ

be the unique inextensible curve solution of (19) satisfying the initial conditions

σ(0) = p, σ ′(0) = u1,
Dσ ′

dt
(0) = au2,

D̂

dt

(Dσ′
dt

)
(0) = awu3.

We define

G(p,u1,au2,awu3)(f) :=
d

dt

∣∣∣
t=0

f
(
σ(t), σ ′(t),

Dσ ′

dt
(t),

D̂

dt

(Dσ′
dt

)
(t)
)
.

From results of Section 4, we have(
σ(t), σ ′(t),

Dσ ′

dt
(t),

D̂

dt

(Dσ′
dt

)
(t)
)
∈ V a,w

n,3 (M),

and G is well defined.

The following result follows easily,
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Lemma 6.1 There exists a unique vector field G on V a,w
n,3 (M) such that the curves

t 7−→
(
γ(t), γ ′(t), Dγ

′

dt (t), D̂dt
(Dγ ′
dt

)
(t)
)

are the integral curves of G, for any solution γ of

equation (19).

Once defined G, we will look for assumptions which assert its completeness.

Recall that an integral curve α of a vector field defined on some interval [0, b), b < +∞, can
be extended to b (as an integral curve) if and only if there exists a sequence {tm}m, tm ↗ b,
such that {α(tm)}m converges (see for instance [15, Lemma 1.56]). The following technical
result directly follows from this fact and Lemma 6.1.

Lemma 6.2 Let γ : [0, b) −→ M be a solution of equation (19) with 0 < b < ∞. The
curve γ can be extended to b as a solution of (19) if and only if there exists a sequence{
γ(tm), γ ′(tm), Dγ

′

dt (tm), D̂dt
(Dγ ′
dt

)
(tm)

}
m

which is convergent in V a,w
n,3 (M) when tm → b.

Although we know that |γ ′(t)|2 = −1, this is not enough to apply Lemma 6.2 even in
the geometrically relevant case of M compact. The reason is similar to the possible geodesic
incompleteness of a compact Lorentzian manifold (see for instance [15, Ex. 7.16],[18]).

However, it is relevant that if a compact Lorentzian manifold admits a timelike conformal
vector field, then it must be geodesically complete [18]. Therefore, from a geometric viewpoint,
it is natural to assume the existence of such infinitesimal conformal symmetry to deal with
the extendibility of the solutions of (19)-(20).

Recall that a vector field K on M is called conformal if the Lie derivative of the metric
with respect to K satisfies

LK〈 , 〉 = 2h〈 , 〉, (26)

for some h ∈ C∞(M), equivalently, the local flows of K are conformal maps. In particular, if
(26) holds with h = 0, K is called Killing vector field.

On the other hand, if a vector field K satisfies

∇XK = hX for all X ∈ X(M), (27)

then clearly we get (26). Moreover, for the 1-form Kb metrically equivalent to K, we have

dKb(X,Y ) = 〈∇XK,Y 〉 − 〈∇YK,X〉 = 0,

for all X,Y ∈ X(M), i.e., Kb is closed. We will call to K which satisfies (27) a conformal
and closed vector field. A Lorentzian manifold which admits a timelike conformal and closed
vector field is locally a Generalized Robertson-Walker spacetime [3], [19].

The following result, inspired from [1, Lemma 9], will be decisive to assure that the image
of the curve in V a,w

n,3 (M), associated to a UC observer γ, is contained in a compact subset.

Lemma 6.3 Let M be a spacetime and let Q be a unit timelike vector field. If γ : I −→M is
a solution of (19)-(20) such that γ(I) lies in a compact subset of M and 〈Q, γ ′〉 is bounded on

I, then the image of t 7−→
(
γ(t), γ ′(t), Dγ

′

dt (t), D̂dt
(
Dσ′

dt

)
(t)
)

is contained in a compact subset

of V a,w
n,3 (M).
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Proof. Consider the 1-form Qb metrically equivalent to Q and the auxiliary Riemannian
metric gR := 〈 , 〉+ 2Qb ⊗Qb. We have,

gR(γ ′, γ ′) = 〈γ ′, γ ′〉+ 2 〈Q, γ ′〉2,

which, by hypothesis, is bounded on I. Hence, there exists a constant c > 0 such that(
γ(I), γ ′(I),

Dγ ′

dt
(I),

D̂

dt

(Dσ′
dt

)
(I)
)
⊂ C,

C :=
{

(p, u1, au2, awu3) ∈ V a,w
n,3 (M) : p ∈ C1, gR(u1, u1) ≤ c

}
,

where C1 is a compact set on M such that γ(I) ⊂ C1. Hence, C is a compact in V a,w
n,3 (M).

�

Now, we are in a position to state the following completeness result (compare with [1, Th.
1] and [2, Th. 1]),

Theorem 6.4 Let M be a spacetime which admits a timelike conformal and closed vector
field K. If InfM

√
−〈K,K〉 > 0 then, each solution γ : I −→ M of (19)-(20) such that γ(I)

lies in a compact subset of M can be extended.

Proof. Let I = [0, b), 0 < b < +∞, be the domain of a solution γ of equation (19)-(20).
Multiplying γ ′ by the vector field K and making use of the representation (25, we obtain,

〈K , γ ′〉 =
w√

w2 − a2
〈K ,L〉+ a√

w2 − a2
[
cos
(√

w2 − a2 t
)
〈K ,M〉+ sin

(√
w2 − a2 t

)
〈K ,N〉

]
.

On the other hand, taking into account that L is Levi-Civita parallel and (27),

d

dt
〈K ,L〉 =

〈DK
dt

, L
〉

= h〈γ ′ , L〉 (h ◦ γ) = − w(h ◦ γ)√
w2 − a2

.

Analogously,
d

dt
〈K ,M〉 =

a(h ◦ γ)√
w2 − a2

cos
(√

w2 − a2 t
)
,

and
d

dt
〈K ,N〉 =

a(h ◦ γ)√
w2 − a2

sin
(√

w2 − a2 t
)
.

Using now that γ(I) is contained in a compact of M , the function h ◦ γ is bounded on
I. Therefore, since I is assumed bounded, the functions 〈K ,L〉, 〈K ,M〉 and 〈K ,N〉 are
bounded on I and, as consequence, there exists a constant c1 > 0 such that

|〈K, γ ′〉| < c1. (28)

Now, if we put Q :=
K

|K|
, where |K|2 = −〈K,K〉 > 0, then Q is a unit timelike vector field

such that, by (28),
|〈Q, γ ′〉| ≤ mc1 on I,

where m = SupM |K|−1 <∞. The proof ends making use of Lemmas 6.2 and 6.3. �

Remark 6.5 Note that the previous theorem implies the following result of mathematical
interest: Let M be a compact spacetime which admits a timelike conformal and closed vector
field K. Then, each inextensible solution of (19)-(20) must be complete. Note that the
Lorentzian universal covering of M inherits the completeness of inextensible UC observers
form the same fact on M .
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7 Completeness of UC trajectories in a Plane Wave spacetime

In this section, we study the completeness of the inextensible UC trajectories with positive
prescribed acceleration, but working in a more analytical way.

Let us consider a spacetime M admitting a global chart
(
x0, x1, · · · , xn

)
. In these coor-

dinates, we can write Equation (26) as follows

γ ′k(t) =
w√

w2 − a2
Lk(t) +

a√
w2 − a2

[
cos
(√
w2 − a2 t

)
Mk(t) + sin

(√
w2 − a2 t

)
Nk(t)

]
,

L′k(t) =
∑

i,j

−Γkij√
w2 − a2

[
wLiLj + a cos

(√
w2 − a2t

)
LiMj + a sin

(√
w2 − a2t

)
LiNj

]
,

M ′k(t) =
∑

i,j

−Γkij√
w2 − a2

[
wMiLj + a cos

(√
w2 − a2t

)
MiMj + a sin

(√
w2 − a2t

)
MiNj

]
, (29)

N ′k(t) =
∑

i,j

−Γkij√
w2 − a2

[
wNiLj + a cos

(√
w2 − a2t

)
NiMj + a sin

(√
w2 − a2t

)
NiNj

]
,

γk(0) = pk, Lk(0) = 1√
w2−a2 (wu1k + au3k), Mk(0) = −1√

w2−a2 (au1k + wu3k), Nk(0) = u2k.

Here, u1k, u2k and u3k are the coordinates of the vectors u1, u2 and u3 respectively, and
satisfy

u1i u1j gij(0) = −1, u2i u2j gij(0) = u2i u2j gij(0) = 1,

u1i u2j gij(0) = u1i u3j gij(0) = u2i u3j gij(0) = 0,

being gij(0) the coefficients of the metric at the point γ(0) in these coordinates. Moreover,
all the Christoffel symbols are evaluated on γ, i.e., Γkij(t) := Γkij

(
γ0(t), · · · , γn(t)

)
.

A (four dimensional) Plane Wave is a spacetime (M, g) which admits a Brinkmann coor-
dinate system [9], i.e., a coordinate system in which the metric has the form

g = H(u, x, y)du2 + 2dudv + dx2 + dy2,

where H(u, x, y) is a quadratic function in the coordinates x and y with coefficients depending
on u, that is,

H(u, x, y) = A(u)x2 +B(u)y2 + C(u)xy +D(u)x+ E(u)y + F (u). (30)

From now on, it is assumed that M admits a global Brinkmann coordinate system, which we
will denote by (u, v, x, y). We also identify M with R4.

In these coordinates, the Christoffel symbols of g are easily computed as follows

Γ1
i,j = 0 for all i, j = 1, . . . , 4 (31)

Γ2
1,1 =

1

2

∂H

∂u
, Γ2

1,3 = Γ2
3,1 =

1

2

∂H

∂x
, Γ2

1,4 = Γ2
4,1 =

1

2

∂H

∂y
(32)

Γ3
1,1 = −1

2

∂H

∂x
, Γ4

1,1 = −1

2

∂H

∂y
, (33)

and the remaining symbols are zero.
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Now, let us consider a UC observer γ : I → R4 satisfying the initial conditions

γ(0) = p, γ ′(0) = u1,
Dγ ′

dt
(0) = a u2,

D̂

dt

(
Dγ ′

dt

)
(0) = aw u3,

with p, u1, u2, u3 ∈ R4. Our final objective is to prove that such trajectory is extensible to
the whole real line, i.e., that the maximal interval of definition of γ is I = R.

By Proposition 5.1, we can write

γ ′(t) =
w√

w2 − a2
L(t) +

a√
w2 − a2

[
cos
(√

w2 − a2 t
)
M(t) + sin

(√
w2 − a2 t

)
N(t)

]
where L,M,N : I → R4 are solutions of system (29) with initial conditions

L(0) =
1√

w2 − a2
(wu1 + au3), M(0) =

−1√
w2 − a2

(au1 + wu3), N(0) = u2.

Writing in coordinates L = (L1, L2, L3, L4), M = (M1,M2,M3,M4), N = (N1, N2, N3, N4),
we have a simple but important fact.

Lemma 7.1 The first components of L,M,N are constant with value

L1 =
1√

w2 − a2
(wu11 + au31), M1 =

−1√
w2 − a2

(au11 + wu31), N1 = u21

Proof. It follows trivially from (31) and (29) that L′1 = M ′1 = N ′1 = 0, then L1,M1, N1 are
constants and equal to the respective initial condition.

�

A direct consequence of the latter lemma is that

γ′1(t) =
w√

w2 − a2
L1 +

a√
w2 − a2

[
cos
(√

w2 − a2 t
)
M1 + sin

(√
w2 − a2 t

)
N1

]
and we have an explicit expression for γ1(t) as

γ1(t) = p1 +
w√

w2 − a2
L1+ (34)

+
a√

w2 − a2
[
M1

∫ t
0 cos

(√
w2 − a2 t

)
dt+N1

∫ t
0 sin

(√
w2 − a2 t

)
dt
]
.

Lemma 7.2 As solutions of system (29), the functions L3,M3, N3, L4,M4, N4 are extensible
to the whole real line.

Proof. The equations from (29) for k = 3, 4 are

L′k(t) =
−Γk11√
w2 − a2

[
wL2

1 + a cos
(√

w2 − a2t
)
L1M1 + a sin

(√
w2 − a2t

)
L1N1

]
,

M ′k(t) =
−Γk11√
w2 − a2

[
wM1L1 + a cos

(√
w2 − a2t

)
M2

1 + a sin
(√

w2 − a2t
)
M1N1

]
,

N ′k(t) =
−Γk11√
w2 − a2

[
wN1L1 + a cos

(√
w2 − a2t

)
N1M1 + a sin

(√
w2 − a2t

)
N2

1

]
.
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The expressions between brackets are trigonometric functions. We define

f(t) =
1√

w2 − a2
[
wL2

1 + a cos
(√
w2 − a2t

)
L1M1 + a sin

(√
w2 − a2t

)
L1N1

]
,

g(t) =
1√

w2 − a2
[
wM1L1 + a cos

(√
w2 − a2t

)
M2

1 + a sin
(√
w2 − a2t

)
M1N1

]
,

h(t) =
1√

w2 − a2
[
wN1L1 + a cos

(√
w2 − a2t

)
N1M1 + a sin

(√
w2 − a2t

)
N2

1

]
.

Then, the previous system is written as

L′k(t) = −f(t)Γk11(γ(t)),

M ′k(t) = −g(t)Γk11(γ(t)),

N ′k(t) = −h(t)Γk11(γ(t)).

(35)

The key point is to analyse the particular form of the Christoffel symbols Γk11(γ(t)), k = 3, 4.
Considering that H is defined by (30), we have

Γ3
11(γ) = −1

2

∂H

∂x
(γ(t)) = 2A(γ1)γ3 + C(γ1)γ4 +D(γ1),

and

Γ4
11(γ) = −∂H

∂y
(γ(t)) = 2B(γ1)γ4 + C(γ1)γ3 +D(γ1),

where γ1(t) is explicitly given by (34). Since

γk(t) = pk +∫ t
0

[
w√

w2−a2 Lk(s) + a√
w2−a2

[
cos
(√
w2 − a2 t

)
Mk(s) + sin

(√
w2 − a2 t

)
Nk(s)

]]
ds,

then system (35) (with k = 3, 4) can be seen as an integro-differential system of six equations.
To pass to a standard system of differential equations, we define the new variables

Lk =
w√

w2 − a2

∫ t

0
Lk(s)ds,

Mk =
a√

w2 − a2

∫ t

0
cos
(√

w2 − a2 s
)
Mk(s)ds,

Nk =
a√

w2 − a2

∫ t

0
sin
(√

w2 − a2 s
)
Nk(s)ds,

for k = 3, 4. With the new variables,

L′k(t) = w√
w2−a2Lk(t),

M′k(t) = a√
w2−a2 cos

(√
w2 − a2 t

)
Mk(t),

N ′k(t) = a√
w2−a2 sin

(√
w2 − a2 t

)
Nk(t),

(36)

for k = 3, 4. Besides,

γk(t) = Lk +Mk +Nk + pk (k = 3, 4).
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Remember that γ1(t) is known explicitly, see (34). Therefore, attending to the expres-
sion of the Christoffel symbols computed before, equations (35) are linear on the variables
Lk,Mk, Nk. Summing up, equations (35)-(36) compose a linear system of 12 equations on
the involved variables Lk, Mk, Nk, Lk,Mk, Nk (k = 3, 4). The basic theory of linear systems
states that any solution of a linear is globally defined on the whole real line, closing the proof.

�

We end the manuscript with the following result.

Theorem 7.3 Every UC inextensible trajectory in a Plane Wave spacetime admitting a global
Brinkmann chart is complete.

Proof. Up to now, we have proved that Lk,Mk, Nk with k = 1, 3, 4 are defined on the whole R.
To finish the proof, it remains to prove the completeness of L2(t),M2(t), N2(t). The equations
(29) for L2 is

L′2(t) =
∑
i,j

−Γ2
ij√

w2 − a2
[
wLiLj + a cos

(√
w2 − a2t

)
LiMj + a sin

(√
w2 − a2t

)
LiNj

]
,

but note that Γ2
ij = 0 if i = 2 or j = 2, and moreover H does not depend on the second

variable. This implies that the right-hand side part of the latter equation depends only on
functions Lk(t),Mk(t), Nk(t) (k=1,3,4), which we have proved that are globally defined, but
not on L2,M2, N2. Thus, L′2(t) is defined for every t, and a simple integration leads to the
conclusion. An analogous argument serves for M2(t), N2(t).

�
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