Mostrar el registro sencillo del ítem

dc.contributor.authorKou, Gang
dc.contributor.authorPeng, Yi
dc.contributor.authorChao, Xiangrui
dc.contributor.authorHerrera Viedma, Enrique 
dc.contributor.authorAlsaadi, Fawaz E.
dc.date.accessioned2021-07-06T07:33:59Z
dc.date.available2021-07-06T07:33:59Z
dc.date.issued2021-02-27
dc.identifier.citationGang Kou... [et al.], A geometrical method for consensus building in GDM with incomplete heterogeneous preference information, Applied Soft Computing, Volume 105, 2021, 107224, ISSN 1568-4946, [https://doi.org/10.1016/j.asoc.2021.107224]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/69532
dc.descriptionThis work was supported in part by grants from the National Natural Science Foundation of China (#71874023, #71725001, #71910107002, #71771037, #71971042), and European Regional Development Fund (FEDER), European Union funds in the project TIN2016-75850-R.es_ES
dc.description.abstractIn real-life group decision-making (GDM) problems, the preferences given by decision-makers(DMs) are often incomplete, because the complexity of decision-making problems and the limitation of knowledge of DM make it difficult for DMs to take a determined evaluation of alternatives. In addition, preference relations provided by DMs are often heterogeneous because they always have different decision habits and hobbies. However, the consensus method for GDM under incomplete heterogeneous preference relations is rarely studied. For four common preference relations: utility values, preference orderings, and (incomplete) multiplicative preference relations and (incomplete) fuzzy preference relations, this paper proposes a geometrical method for consensus building in GDM. Specifically, we integrate incomplete heterogeneous preference structures using a similarity-based optimization model and set a corresponding geometrical consensus measurement. Then, preference modification and weighting processes are proposed to improve consensus degree. Finally, we conduct a comparison analysis based on a qualitative analysis and algorithm complexity analysis of existing consensus reaching methods. Numerical analyses and convergence tests show that our method can promote the improvement of the consensus degree in GDM, and has less time complexity than the previous methods. The proposed geometrical method is a more explainable model due to operability and simplicity.es_ES
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC) 71874023 71725001 71910107002 71771037 71971042es_ES
dc.description.sponsorshipEuropean Regional Development Fund (FEDER), European Union TIN2016-75850-Res_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectGroup decision makinges_ES
dc.subjectConsensus reachinges_ES
dc.subjectIncomplete heterogeneous preference structureses_ES
dc.subjectGeometrical methodes_ES
dc.titleA geometrical method for consensus building in GDM with incomplete heterogeneous preference informationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.asoc.2021.107224
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España