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a b s t r a c t

In real-life group decision-making (GDM) problems, the preferences given by decision-makers(DMs)
are often incomplete, because the complexity of decision-making problems and the limitation of
knowledge of DM make it difficult for DMs to take a determined evaluation of alternatives. In
addition, preference relations provided by DMs are often heterogeneous because they always have
different decision habits and hobbies. However, the consensus method for GDM under incomplete
heterogeneous preference relations is rarely studied. For four common preference relations: utility
values, preference orderings, and (incomplete) multiplicative preference relations and (incomplete)
fuzzy preference relations, this paper proposes a geometrical method for consensus building in GDM.
Specifically, we integrate incomplete heterogeneous preference structures using a similarity-based
optimization model and set a corresponding geometrical consensus measurement. Then, preference
modification and weighting processes are proposed to improve consensus degree. Finally, we conduct
a comparison analysis based on a qualitative analysis and algorithm complexity analysis of existing
consensus reaching methods. Numerical analyses and convergence tests show that our method can
promote the improvement of the consensus degree in GDM, and has less time complexity than the
previous methods. The proposed geometrical method is a more explainable model due to operability
and simplicity.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The group decision-making (GDM) is a process of aggregating
he preference information of each decision expert in a group into
collective opinion under certain decision criteria. Many major
nd complex decision-making problems need to be completed
y relying on the experience and wisdom of the group and pro-
oting democracy. Recent years, group decision-making (GDM)
roblems have long been identified as a hot topic in the field of
ecision science [1–7].
Consensus in GDM typically means reach a consent, not nec-

ssarily the agreement of all group participants [8]. Many factors
nfluence the consensus reaching process, involving ambiguity of
Ms’ expertise, the incompleteness of decision-making informa-
ion, the multiplicity of decision-making goals, the uncertainty
f decision-making environments. Consequently, many DMs may

∗ Corresponding author.
E-mail address: chaoxr@scu.edu.cn (X. Chao).
ttps://doi.org/10.1016/j.asoc.2021.107224
568-4946/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
provide uncertain evaluations and even incomplete preference
representations in the decision-making process. On the other
hand, DMs are always come from different areas and therefore
have their varying experience, knowledge, personalities, and ed-
ucational backgrounds, and may tend to provide their preference
using different structures of preference relations according to
their own will. As a result, consensus reaching in GDM with
incomplete heterogeneous preference information is a common
real-life management issues and a difficult problem needs to be
urgently solved [2,8–22].

In the past decade, consensus reaching with heterogeneous
preference forms has received more and more attention. Re-
searchers have developed many methods to handle the problem
of GDM with heterogeneous preference structures. For example,
Herrera-Viedma et al. [23] proposed a consensus process for deal-
ing with GDM with heterogeneous preference structures. Their
framework performs the iterative feedback adjustment until an
acceptable consensus degree is reached. In the consensus pro-
cess, the feedback adjustment suggestions are provided to DMs
to revise individual judgments. Pérez et al. [24] developed a
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ew feedback mechanism considering the relevance or impor-
ance level of different DMs and heterogeneity criterion. Hereafter
any feedback adjustment rules are also studied in the existing

iterature [9,17,25]. Another important recent research direction
s to acquire collective opinion simultaneously associated with
ndividual preference consistency and group consensus degree.
hang and Guo [17] introduced a bi-objective optimization model
hich includes two targets maximizing both the group con-
ensus and the individual consistency of each decision maker.
he solution can be regarded as a priority vector possessing
he consensus degree in GDM. Li et al. [12] also proposed a
onsensus model for the heterogeneous preference information
hich can assure that the consistency of an individual preference
elation cannot be decreased in consensus reaching process (CRP).
ecently, more situations have also been brought into heteroge-
eous GDM, such as self-confidence [26] and individual concerns
nd satisfactions [27,28].
Incomplete preference information is also a popular topic in

DM questions [16,29–33]. Vetschera [34] proposed a complete
anking method for incomplete preferences based on probabilistic
nformation, which is the relative size of regions in parameter
pace. Zhang and Guo [17] proposed a group preference deriva-
ion method and used to consensus reaching with an uncertain
ituation. To fill in missing values is another approach to deal
ith the incomplete preference issue and the management of

gnorance situations too [35]. Cheng et al. [26] developed a new
our-way iteration step to estimate the missing preference values,
ut it is difficult to assert whether the filling values can reflect the
rue judgment of the experts.

From the above analysis, CRP with incomplete preference in-
ormation and heterogeneous preference relations has signifi-
antly advanced in the domain of GDM as a result of previous
tudies. However, many studies for incomplete heterogeneous
DM need to derive the priority vector from individual prefer-
nce relations or transform various preference relations into a
nified structure, or fill in missing values of incomplete individual
reference relations. The disadvantage of these methods is the
oss or disturbance of preference information or the increas-
ng complexity of the decision-making process. There is very
ittle literature which directly addresses consensus building in
erms of incomplete preference information without deriving the
ndividual priority vector. Thus, the collective opinion directly
ggregated from incomplete heterogeneous preference informa-
ion still a problem which need to be resolved. On the one hand,
ore operational and explainable methods avoiding more steps
nd complex optimization need to be developed in order to
educe the complexity of CRP. On the other hand, the existing
onsensus measurement cannot always be used directly in GDM
ue to incomplete and heterogeneous preference information, so
suitable measurement for this problem must be proposed.
Motivated to deal with the above questions, we propose a

eometrical consensus building a model for GDM with incom-
lete heterogeneous preference structures (utility values, pref-
rence orderings, multiplicative preference relations, and fuzzy
reference relations). In this model, integrating different pref-
rence relations, modifying individual preference and weighting
rocesses will be systemically developed based on a geometric
nsight. A geometrical consensus degree is also introduced and
ompared to existing indexes using a qualitative analysis. Finally,
e simulate a convergence test for our proposed model and
how the effectiveness. The main contribution of this paper is
o propose a geometrical insight to build consensus in GDM
ith incomplete heterogeneous preference information. The col-

ective opinion can be obtained directly through the similarity
aximization optimization model of heterogeneous preference
elations avoiding to filling in missing values or transforming

2

different preference formats into unified formats. In addition,
we propose a mathematically proven individual preference ad-
justment mechanism that has convergence of consensus degree,
rather than a simulation experiment method used in existing
literatures. Compared to previous methods, it is operability and
simplicity because of its less time complexity and fewer steps.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce related preliminaries about different pref-
erence relations. Section 3 we propose an optimization model
for aggregation of the heterogeneous preference information, and
in Section 4, we construct a consensus reaching model for four
incomplete different preference structures. Section 5 provides a
numerical example of the proposed model, and Section 6 tests
the convergence of the proposed model. We conclude the paper
in Section 7.

2. Preliminaries

In this section, we firstly introduce the logical structure of
this article, then introduce four different preference relations and
main properties corresponding to various preference formats.

In order to facilitate the expression of the subsequent content
of this article, the method flow of the CRP in our methods is
arranged as follows (Fig. 1). The detailed procedure of this method
is described in Section 2 to Section 4.

2.1. Different preference relation and basic notation

First, we explain some notations and review related definitions
used in our model. We assume that A = {A1, A2, . . . , An} is
a set of feasible alternatives selected by DMs, and that w =

w1, w2, . . . , wn)T is a priority vector that comprises the collec-
ive opinions of DMs.

(1) Utility Values. Assume U = {u1, u2, . . . , un} is the set of
tility values provided by one of the DMs. ui, i = 1, 2, . . . , n
epresents the utility values corresponding to alternative Ai. Gen-
rally, ui range from 0 to 1, and the higher the utility value, the
ore important the alternative possesses [16,23,36,37].
(2) Preference orderings. Let O = {o1, o2, . . . , on} be a prefer-

nce ordering set. This set is the permutation function over the
et {1, 2, . . . , n}. For example, if an individual decision maker pro-
ides the ordering {3, 1, 4, 2} for four alternatives {A1, A2, A3, A4},
hen the preference ordering is priority sequence of alterna-
ives, that means the alternative A3 is the best selection among
the candidate alternatives, and A2 is the least preferable of the
alternatives [16,23,36,38].

(3) Multiplicative preference relation [25,39–41]. In contrast
to the utility values and preference orderings, the multiplicative
preference relation is always represented by a pair-wise com-
parison matrix (PCM). Assume the matrix A =

(
aij

)
n×n , i, j =

, 2, . . . , n is the PCM provided by DMs. The entry aij of the PCM
s the degree of preference for alternative Ai over Aj. The PCM
atisfies aijaji = 1 and aij > 0.
(4) Fuzzy preference relation [38,42–45]. A fuzzy preference

elation is determined by a comparison matrix whose entries
epresent preference degree for two alternatives. This differs to
ultiplicative preference relation in that a fuzzy preference rela-

ion uses real numbers from 0 to 1 rather than crisp values. The
alues of a fuzzy PCM range from zero to one and satisfy bij+bji =

. If bij is 0.5, then the alternatives are equally important. If the
alue of bij (resp.bji,) is one (resp., zero), then the alternative Ai is
he most (resp., least) important than Aj.

To facilitate searching and understanding, the symbols used in
his study are summarize at follows (Table 1):
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Fig. 1. The flow of CRP.
3. Similarity relation and group preference aggregation

In this section, we illustrate the cosine similarity relation
between heterogeneous preference relations and their priority
vector, and then introduce an optimization model to obtain the
collective opinion from individual preference information.
3

3.1. Cosine similarity relation

The cosine similarity measure is one of the most widely used
similarity measurement indices for two vectors. The cosine sim-
ilarity value of vectors, −→v = (a , a , . . . , a ) and −→v =
1 1 2 n 2
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Table 1
Summary of the symbols used in this study.
Symbols Meaning

E = {e1, . . . , ei, . . . , em} Set of DMs, ei is the i-th DM of m DMs.
A = {A1, A2, . . . , An} Set of alternatives, Aj is the j-th alternative.
−→v i = (a1, a2, . . . , an) n-vectors.
w = {w1, . . . , wi, . . . , wn} Priority vector obtained from the preference relation.
σ = {σ1, . . . , σi, . . . , σm} The corresponding weights of DMs.
u = {u1, u2, . . . , un} Set of utility values provided by one of the DMs.
ui, i = 1, 2, . . . , n Utility values corresponding to alternativexi .
U = (uij)n×n uij = ui/ujin utility value matrix
o = {o1, o2, . . . , on} Preference ordering set.
oi Order of alternative xi .
O = (oij)n×n oij = (n − oi)/(n − oj)in preference ordering matrix
A =

(
aij

)
n×n , i, j = 1, 2, . . . , n A PCM provided by DMs.

aij The degree of preference for alternative xi over xj .
B = (bij)n×n, i, j = 1, 2, . . . , n An additive PCM.
bij The fuzzy degree of preference for alternative xi over xj .
pij A transformed value of bij using bij/(1 + bij)
Ω = {Ωu, Ωo, ΩA, ΩB} A set of DMs with utility values, preference ordering, and

multiplicative and additive preference relations, respectively.
−→u (k)

j,
−→o (k)

j,
−→a (k)

j ,
−→p (k)

j Column vectors of matrixes U,O, A, Bof the kth DMs.
uij

(k)
, o(k)

ij, a
(k)
ij , p(k)

ij Normalized entries of matrixes U,O, A, Bof the k-th DMs.
Θ The set of positions in the preference relations that contains

preference values.
ui

(k,t), oi(k,t), aij(k,t), bij(k,t) The preference of k-th DMs at t-th preference iteration.
σk

(t) Weight of k-th DMs at the t-th preference iteration.
PC (t) The collective opinion at the t-th preference iteration.
·
(G,t) Feedback information from the collective opinion after the

t-th preference iteration.
(b1, b2, . . . , bn), is defined as follows:

⟨
−→v 1,

−→v 2
⟩
=

n∑
i=1

aibi

√∑n
i=1(ai)2

√ n∑
i=1

(bi)2

(1)

The application of the cosine similarity measure to decision
making was introduced by Kou & Lin [46]. They discovered that
there is a similarity relation between a priority vector and a pair-
wise comparison matrix (PCM) in the analytic hierarchy process.
They found that the cosine value is 1 if the PCM is perfectly
consistent, and that the more consistent the PCM, the higher the
cosine value of the priority vector and each column of the PCM.

For utility value, if a priority vector is consistent with utility
values, then wi = ui/

∑n
i=1 ui, i = 1, 2, . . . , n, and wi

wj
=

ui
uj
, and so

the cosine similarity measure in this case is

⟨−→u j, w
⟩
=

n∑
i=1

uiwi

uj√ n∑
i=1

(
ui

uj

)2√∑n
i=1 w2

i

=

n∑
i=1

wi

wj
wi√ n∑

i=1

(
wi

wj

)2
√ n∑

i=1

w2
i

= 1 (2)

here the vector −→u j = ( u1uj ,
u2
uj

, . . . , un
uj
)T , j = 1, 2, . . . , n.

It is clear that the collective opinion in GDM should be close to
the utility value, that is, the cosine value

⟨−→u j, w
⟩
must approach

one.
For preference ordering, Herrera et al. [47] proposed a non-

decreasing function f that assigns ordering values to utilities as
4

follows:

ui = f (n − oi) =
n − oi
n − 1

, i = 1, 2, . . . , n (3)

Therefore, the priority vector wi is equal to ui/
∑n

i=1 ui, i =

1, 2, . . . , n in preference ordering. That is,

wi =
n − oi
n − 1

/

n∑
i=1

n − oi
n − 1

, i = 1, 2, . . . , n (4)

It is obvious that the following formula (5) must be satisfied
based on (4), if a priority vector is consistent with preference
ordering.
wi

wj
=

n − oi
n − oj

(5)

and the cosine similarity measure is one in this case when pref-
erence ordering is consistent, i.e.,

⟨−→o j, w
⟩
=

n∑
i=1

n − oi
n − oj

wi√ n∑
i=1

(
n − oi
n − oj

)2
√ n∑

i=1

w2
i

=

n∑
i=1

wi

wj
wi√ n∑

i=1

(
wi

wj

)2
√ n∑

i=1

w2
i

= 1 (6)

where the vector −→o j = ( n−o1
n−oj

,
n−o2
n−oj

, . . . , n−on
n−oj

)T , j = 1, 2, . . . , n.
Generally, the collective opinion is not perfectly consistent to

the individual preference relation, but it should be close to the
preference vector, that is

⟨−→o j, w
⟩
will be close to 1.

Specially, let B = (bij)n×n, i, j = 1, 2, . . . , n be a fuzzy PCM.
We can obtain the cosine similarity relation under the following
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t

p

f

p

a

ransformation for a fuzzy preference relation be means of (7):

ij =
bij

1 − bij
(7)

The multiplicative preference relation and fuzzy preference
relation also have a similarity relation between the column vec-
tor of PCM and priority vector [3,22,46]. That is

⟨−→a ij, w
⟩
and⟨−→p ij, w

⟩
is equal to 1 when two preference relations have perfect

consistency in which −→a ij and
−→p ij is the column vector of two

preference relations.
Thus, the collective opinion in GDM should be close to the

column vector of multiplicative preference relations and fuzzy
preference relations.

In sum, it is concluded that the similarity relation is 1 between
the column vector (or project vector of them) of the individ-
ual preference relation and collective opinion if each individual
preference relation satisfies the consistency.

3.2. Group preference aggregation

Integrating different preference forms has become a hot topic
in GDM [13,16,17,23,36,38,48,49]. The natural idea and most ap-
plied method is to unify heterogeneous preference structures into
unified formats and implement selection operators to rank alter-
natives [50]. Other transformation objects include converting util-
ity values and preference orderings [50], utility and multiplicative
preference relations [43,47,51], fuzzy and multiplicative prefer-
ence relations [22,42,46], interval Fuzzy preference relations [25,
52] and linguistic preference relations [53,54]. Optimization-
based methods were also used to derive collective opinions,
instead of transforming various preference structures into uni-
fied formats. Existing optimization models include linear goal
programming [55], nonlinear optimization [17,42–44], and chi-
square optimization [51]. Other preference formats integrated
by optimization methods include interval preference relations,
intuitionistic fuzzy sets, and trapezoidal fuzzy numbers [43,53].
In this subsection, a preference aggregation method will be pro-
posed based on a vector operation.

We simplify the matrix through normalization. We set uij =
ui
uj

and obtain the matrix

U =
(
uij

)
n×n =

⎛⎜⎜⎜⎜⎝
u11 u12 . . . u1n

u21 u22 . . . u2n
...

...
. . .

...

un1 un2 . . . unn

⎞⎟⎟⎟⎟⎠ (8)

Then, we set oij =
n−oi
n−oj

and normalize the proposed matrix as
ollows:

O = (oij)n×n =

⎛⎜⎜⎜⎜⎝
o11 o12 . . . o1n

o21 o22 . . . o2n
...

...
. . .

...

on1 on2 . . . onn

⎞⎟⎟⎟⎟⎠ (9)

We repeat the multiplicative preference relation and fuzzy the
reference relation PCM as in (10) and (11):

A = (aij)n×n =

⎛⎜⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

⎞⎟⎟⎟⎟⎠ (10)
an1 an2 . . . ann
5

and

B = (pij)n×n =

⎛⎜⎜⎜⎜⎝
p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
. . .

...

pn1 pn2 . . . pnn

⎞⎟⎟⎟⎟⎠ (11)

Let −→
· indicate a column vector of a matrix in (8)–(11). We

ssume that Λ = {σ1, σ2, . . . , σK } is a finite set of degrees of
importance pre-specified by DMs. Let Ω = {ΩU , ΩO, ΩA, ΩB}

be a set of DMs with utility values, preference ordering, and
multiplicative and fuzzy preference relations, respectively. The
basic insight of the following optimization is that the collective
opinion should be the closest vector to each preference relation.

The optimization model is as follows:

Maximize C =

∑
k∈ΩU

n∑
j=1

σk
⟨−→u (k)

j, w
⟩
+

∑
k∈ΩO

n∑
j=1

σk
⟨−→o (k)

j, w
⟩

+

∑
k∈ΩA

n∑
j=1

σk

⟨
−→a (k)

j , w

⟩
+

∑
k∈ΩB

n∑
j=1

σk

⟨
−→p (k)

j , w

⟩
(12)

Subject to

⎧⎪⎨⎪⎩
n∑

i=1

wi = 1;

0 ≤ wi ≤ 1.
where ·(

k) indicate the kth decision maker’s normalized PCM, and
−→u ij

(k)
,
−→o ij

(k)
,
−→a ij

(k)
and −→p ij

(k)
are the column vectors of ma-

trices (8)–(11), respectively. C is total cosine similarity measure
between column vectors of matrices and the collective vector.

The model (12) can be transformed into following (13) :

Maximize

⟨ ∑
k∈ΩU

n∑
j=1

σk
−→u (k)

j, w

⟩

+

⟨∑
k∈ΩO

n∑
j=1

σk
−→o (k)

j, w

⟩

+

⟨∑
k∈ΩA

n∑
j=1

σk
−→a (k)

j , w

⟩
+

⟨∑
k∈ΩB

n∑
j=1

σk
−→p (k)

j , w

⟩
(13)

The (13) is also equal to (14):

Maximize

⟨ ∑
k∈ΩU

n∑
j=1

σk
−→u (k)

j +
∑
k∈ΩO

n∑
j=1

σk
−→o (k)

j

+

∑
k∈ΩA

n∑
j=1

σk
−→a (k)

j +

∑
k∈ΩB

n∑
j=1

σk
−→p (k)

j , w

⟩
(14)

Let v =
∑

k∈ΩU

∑n
j=1 σk

−→u (k)
j +

∑
k∈ΩO

∑n
j=1 σk

−→o (k)
j,

+
∑

k∈ΩA

∑n
j=1 σk

−→a (k)
j +

∑
k∈ΩB

∑n
j=1 σk

−→p (k)
j , thus the objective

function ⟨v, w⟩has a unique solution w = v since in a vector
space, the maximum cosine similarity is held when the vector
is coincident (the angle of two vectors is 0).

Remark. In particular, in practice, we use pij = 0.9999 and
pji = 0.0001, instead of pij = 1 and pji = 0, to avoid potential
mathematical obstacles. In addition, n − oj is replaced by 0.0001,
when oj = n in the preference ordering.

4. Consensus reaching model

In this section, we consider the question of reaching consensus
in GDM with incomplete heterogeneous preference information,
which is a hot topic in information fusion in recent years [16,
31,33,42,55,56]. The incomplete preference information in this
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Fig. 2. Consensus process.

paper includes incomplete multiplicative and fuzzy preference
relations. The consensus process is implemented as Fig. 2 and the
detailed steps will be illustrated as follows:

4.1. Integrating incomplete preference information

We propose an optimization model to integrate varying pref-
erence structures with incomplete preference information. In our
paper, we still use an optimization model to obtain a priority
vector to enable the model to reduce the number of steps and
decrease complexity to solve this question.

Let Ω ′
= {Ω ′

A, Ω ′

B} be a set of DMs with incomplete multi-
licative and fuzzy preference relations, and Θ = {ΘA′ , ΘB′} the
ubscript set of known values in the PCM, respectively. Without
oss of generality, we suppose an entry of DMs with an incom-
lete PCM for multiplicative and fuzzy preference relations is as
ollows:

′

ij =

{
aij, (i, j) ∈ ΘA′

x, (i, j) /∈ ΘA′ .
(15)

nd

′

ij =

{ bij
1 − bij

, (i, j) ∈ ΘB′

x, (i, j) /∈ ΘB′ .
(16)

s in (10) and (11), we normalize the incomplete PCM, using a′
ij

and p′

ij as normalized entries of (15) and (16).

a′
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aij√∑
i

aij2
, (i, j) ∈ ΘA′

x, (i, j) /∈ ΘA′ .

(17)

p′

ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p′

ij√∑
i

p′

ij
2
, (i, j) ∈ ΘB′

x, (i, j) /∈ ΘB′ .

(18)

We construct a cosine similarity measure-based optimization
odel for incomplete preference information. The basic insight is

hat the column vector with known entries and the corresponding
roject vector of the collective opinion in the same position have
maximum similarity degree, which is Max

∑
i a

′
ijwi, (i, j) ∈

A′ and Max
∑

i p
′

ijwi, (i, j) ∈ ΘB′ where a′

ij and p′

ij is denoted
n Eq. (17) and (18). For example, assume one of the column
ectors of the PCM is −→a = (a , a , . . . , a , x, . . . , x)T , then
j 1j 2j mj

6

−→a j, w
⟩

=

∑m
i=1 aijwi√∑m

i=1 aij2
√∑m

i=1 wi2
. In geometrical insight, the maxi-

mum similarity degree should be kept between the column vector
with non-missing values and the corresponding project vector of
collective preference opinion in the subspace.

In this case, the cosine similarity optimization model can be
formulated as follows:

Maximize

⟨ ∑
k∈ΩU

n∑
j=1

σk
−→u j

(k)
, w

⟩
+

⟨∑
k∈ΩO

n∑
j=1

σk
−→o j

(k)
, w

⟩

+

⟨∑
k∈ΩA

n∑
j=1

σk
−→a (k)

i, w

⟩
+

⟨ ∑
k∈ΩA′

∑
(i,j)∈ΘA′

σk
−→a ′

j
(k)

, w

⟩

+

⟨∑
k∈ΩB

n∑
j=1

σk
−→p (k)

j, w

⟩
+

⟨∑
k∈Ω ′

B

∑
(i,j)∈ΘB′

σk
−→p ′

j
(k)

, w

⟩
(19)

Subject to

⎧⎪⎨⎪⎩
n∑

i=1

wi = 1;

0 ≤ wi ≤ 1.
The solution can also be solved using the same method as (13).

The result is as follows (20):

w =

∑
k∈ΩU

n∑
j=1

σk
−→u j

(k)
+

∑
k∈ΩO

n∑
j=1

σk
−→o j

(k)
+

∑
k∈ΩA

n∑
i,j=1

σk
−→a (k)

j

+

∑
k∈ΩA′

∑
(i,j)∈ΘA′

σk
−→a ′

j
(k)

+

∑
k∈ΩB

n∑
i,j=1

σk
−→p (k)

j +

∑
k∈Ω ′

B

∑
(i,j)∈ΘB′

σk
−→p ′

j
(k) (20)

4.2. Consensus measurement

Consensus measure and control is used to judge whether the
consensus has been reached in GDM. The ‘‘soft’’ index is most
widely used method to evaluate the consensus degree in GDM.
It can be divided into two classes. The one is measured by a total
‘‘distance’’ between collective opinion and individual preference
relations, for instances, the position deviation of individual pri-
ority vector and group opinion [23], ordinal consensus degree
and cardinal consensus degree [9]. The other one is the total
deviation among individual preference relations [13,24]. Other
common indexes include Geometric Consistency Index (Escobar
et al. 2004), and extend Geometric Consistency Index [57] and
intuitionistic measurement for consensus reaching [8]. The math-
ematical properties of consensus index were also discussed in [1,
58]. However, the existing methods are not very applicable to
decision surroundings with incomplete heterogeneous preference
information (the detailed analysis will be shown in Section 6.1).

In our model, a similarity consensus measure (SCD) is estab-
lished to judge consensus degree (see the equation in Box I).
where w is the collective opinion in GDM, m is the number of
DMs and n is the size of alternatives.

It is clear that the more SCD values obtained, the higher the
consensus degree will be. The SCD is also a weighted average
result considering impacts from different DMs.

4.3. Feedback modification

In fact, consensus reaching cannot come to an end at once time
as it may be difficult to get all DMs to accept the collective opin-
ion. (In other words, some individual preference relations do not
have higher similarity to the collective opinion). Thus, feedback
information about collective opinion needs to turn back to DMs
in order to persuade DMs to change part of their judgments based
on referred information in GDM [59,60].

The modification vector will move toward to collective opinion
compared to the original vector in this step so that the consensus
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1
mn

⟨ ∑
k∈ΩU

n∑
j=1

σk
−→u j

(k)
+

∑
k∈ΩO

n∑
j=1

σk
−→o j

(k)
+

∑
k∈ΩA

n∑
i,j=1

σk
−→a (k)

j

+

∑
k∈ΩA′

∑
(i,j)∈ΘA′

σk
−→a ′

j
(k)

+

∑
k∈ΩB

n∑
i,j=1

σk
−→p (k)

j +
∑
k∈Ω ′

B

∑
(i,j)∈ΘB′

σk
−→p ′

j
(k)

, w

⟩
(21)

Box I.
Fig. 3. Modification principle of feedback information.

egree will increase along with the vector transformation. That
s, after modification, the column vector should be located in
‘middle’’ of individual preference and collective opinion (Fig. 3).

Without loss of generality, let α =
(
a1, a2, . . . , an

)T and β =

b1, b2, . . . , bn
)T be two given unit vectors. Assume α rotates to β ,

and γ = (r1, r2, . . . , rn)T transformed vector from α. The project
vector α toward to β is cβ and the following dot product holds:

(α − cβ) · β = 0 (22)

Thus, c =
α·β

β·β
. Then the project vector α toward to β (note

r oj
β

(α)) is as follows:

r oj
β

(α) =

(
α · β

β · β

)
β (23)

n a similar way, the project vector of transformed vector γ is the
ollowing:

r oj
β

(γ ) =

(
γ · β

β · β

)
β (24)

hen,
Pr oj

β

(α) − Pr oj
β

(γ ), Pr oj
β

(β)
⟩

=

⟨(
(α − γ ) · β

β · β

)
β, β

⟩
=

(
(α − γ ) · β

β · β

)
⟨β, β⟩

=

Pr oj
β

(α) − Pr oj
β

(γ )


(25)

And

(α − γ ) · β =

Pr oj
β

(α) − Pr oj
β

(γ )
 . (26)

Therefore, the vector equation (α−γ )/
Pr oj

β

(α) − Pr oj
β

(γ )
 =

is one of the necessary conditions in the transformation pro-
ess, and the similarity can be corrected by the vector scale
nvariant as follows:

| | | |
≤ ai − ri ≤ ai − bi (27)

7

Thus, Min{ai, bi} ≤ ri ≤ Max{ai, bi} can be deduced as a
necessary condition of (27).

The following relation also holds from (27):

Min{ai, bi}/Max{aj, bj} ≤ ri/rj ≤ Max{ai, bi}/Min{aj, bj} (28)

Based on above result, we provide corresponding forms for
different preference relations. Clearly, utility value and preference
ordering can be directly modified by means of group prefer-
ence [9].

Utility value: Let ui
(k,t+1) be t + 1 round modification, then

ui
(G,t)

= wi
(t) ∑n

k=1 ui
(k,t), where ui

(G,t) is collective at t round. The
modification can be selected as follows:

ui
(k,t+1)

∈ [min{ui
(G,t), ui

(k,t)
},max{ui

(G,t), ui
(k,t)

}] (29)

Preference ordering: Let oi(k,t+1) be t + 1 round modification,
then oi(G,t) should be t if the wi

(t) is tth largest value in collective
opinion. The modification interval is as follows:

oi(k,t+1)
∈ [min{oi(G,t), oi(k,t)},max{oi(G,t), oi(k,t)}] (30)

However, multiplicative and fuzzy preference relation is PCM
and has complex comparison decision-making, the modification
need to quickly convergent to collective opinion. For this purpose,
the modification interval of each value in individual preference
relation can be set up with row average vector of PCM.

Multiplicative preference relation: Let a(k,t)i =
∑

j a
(k,t)
ij , i =

1, 2, . . . , n be the average mean of a row vector. The existing
preference values can be modified as follows:
aij(k,t+1)

∈ [Min{Max{Min{ai(k,t), w
(t)
i }

/Max{aj(k,t), w
(t)
j }, ai(k,t)}, a

(k,t)
ij },

Max{Min{Max{ai(k,t), w
(t)
i }

/Min{aj(k,t), w
(t)
j }, ai(k,t)}, a

(k,t)
ij }],

i > j (31)

Fuzzy preference relation: Let p(k,t)i =
∑

j p
(k,t)
ij , i = 1, 2, . . . , n

be the average mean of a row vector. The fuzzy preference re-
lation can be modified on account of the following interval:

pij(k,t+1)
∈ [Min{Max{Min{pi

(k,t)
, w

(t)
i }

/Max{1 + pj
(k,t)

, 1 + w
(t)
j }, pi

(k,t)
}, p(k,t)ij },

{Max{Min{pi
(k,t)

, w
(t)
i }

/Min{1 + pj
(k,t)

, 1 + w
(t)
j }, pi

(k,t)
}, p(k,t)ij }],

i > j (32)

4.4. Weighting process

To assure a convergence of CRP, a weighting function with
respect to the similarity measure is proposed to improve the
importance of being ‘‘close’’ to collective opinion while it can
decrease the influence of those DMs that are ‘‘far away’’ from
collective opinion [61]. The updated weights can be measured
by means of relative distance toward to total similarity of the
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ndividual column vector and collective opinion at iteration.

k
(t+1)

= σk
(t)

⟨
Pk(t), PC (t)⟩

m∑
j=1

⟨
Pj(t), PC (t)⟩ , k = 1, 2, . . . ,m (33)

where σk
(t) is weight of kth DM at t-th iteration, PC (t) is the

collective opinion in tth iteration, and Pj(t) is row mean column
of jth DM at tth iteration.

It is clear that weights become larger when the individual
preference relation moves toward to collective since the cosine
similarity increases as the angle of two vectors is reduced.

In sum, the consensus reaching can be implemented in follow-
ing steps:

Step 1: integrate incomplete heterogeneous preference rela-
tions (20);

Step 2: measure consensus degree and judge whether or not
reach preset agreement threshold (21). If the consensus cannot
be reached, then go to step 3.

Step 3: modify preference value in terms of feedback informa-
tion corresponding to different forms (29)–(32).

Step 4: update weights and go to step1.

5. Illustrative examples

In this section, we present numeric examples to validate the
proposed model and show the detailed consensus building pro-
cess.

5.1. Examples in literatures

Example 1. Integrating four different preference structures. This
example is studied in Chiclana et al. [36], Xu et al. [16], and Fan
et al. [31]. We let Π = {DM1,DM2, . . . ,DMK } be the K th DM and
assume that the importance degrees are equal for all the DMs.
The varying preference formats are as follows.

The former two DMs provide utility values with the formats
DM1 and DM2, where

DM1 =
{
ui

⏐⏐i = 1, 2, 3, 4
}

= {0.5, 0.7, 1.0, 0.1}

M2 =
{
ui

⏐⏐i = 1, 2, 3, 4
}

= {0.7, 0.9, 0.6, 0.3}

nd with the ranking of alternatives A3 ≻ A2 ≻ A1 ≻ A4 and
2 ≻ A1 ≻ A3 ≻ A4, respectively.
The third and fourth DMs provide preference orderings, with

he preference structures DM3 and DM4, where

M3 =
{
oi

⏐⏐i = 1, 2, 3, 4
}

= {3, 1, 4, 2}

M4 =
{
oi

⏐⏐i = 1, 2, 3, 4
}

= {2, 3, 1, 4}

The fifth and sixth DMs express their preference information
n terms of a multiplicative preference relation as DM5 and DM6,
here

M5 =

⎛⎜⎜⎜⎜⎝
1 1/7 1/3 1/5

7 1 3 2

3 1/3 1 1/2

5 1/2 2 1

⎞⎟⎟⎟⎟⎠

M6 =

⎛⎜⎜⎜⎜⎝
1 3 1/4 5

1/3 1 2 1/3

4 1/2 1 2

⎞⎟⎟⎟⎟⎠

1/5 3 1/2 1

8

The last two DMs provide their preference formats by fuzzy
reference relation. The fuzzy PCM is DM7 and DM8, respectively.

DM7 =

⎛⎜⎜⎜⎜⎝
0.5 0.1 0.6 0.7

0.9 0.5 0.8 0.4

0.4 0.2 0.5 0.9

0.3 0.6 0.1 0.5

⎞⎟⎟⎟⎟⎠

DM8 =

⎛⎜⎜⎜⎜⎝
0.5 0.5 0.7 1

0.5 0.5 0.8 0.6

0.3 0.2 0.5 0.8

0 0.4 0.2 0.5

⎞⎟⎟⎟⎟⎠
The ranking of alternatives is A2 ≻ A3 ≻ A1 ≻ A4 using

our methods, the same result as that obtained by using ex-
isting methods [16,31,36,62]. However, our result has a higher
cosine similarity value than other methods. This indicates that
our method has a higher consistent for each DM than the other
models (in Table 2). The SCD measure also shows that our method
also has the highest consensus degree compared to other models.

Example 2. This example includes incomplete multiplicative and
fuzzy preference relations, which are investigated in Xu et al. [16].
The example has six DMs from different areas. They evaluate
six suppliers based on overall cost criteria. The different DMs
have the same importance degree. The preference formats are as
follows:

DM1 = {0.15, 0.10, 0.30, 0.20, 0.35, 0.40};
DM2 = {4, 6, 5, 3, 2, 1};

DM3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 1/3 1/5 1/8

1/3 1 1/3 1/4 1/7 1/9

1/2 3 1 1/2 1/5 1/6

3 4 2 1 1/2 1/4

5 7 5 2 1 1/3

1/8 9 6 4 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

DM4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 x 1/4 1/2 1/6

1/4 1 1/5 x 1/4 1/6

x 5 1 x 1/3 x

4 x x 1 1/4 1/2

2 4 3 4 1 x

6 6 x 2 x 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

DM5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.7 0.6 0.4 0.8 0.9

0.3 0.5 0.4 0.3 0.2 1

0.4 0.6 0.5 0.4 0.3 0.2

0.6 0.7 0.6 0.5 0.4 0.3

0.2 0.8 0.7 0.6 0.5 0.2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0.1 0 0.8 0.7 0.8 0.5
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Table 2
Comparative result with other methods.
Approaches Priority vector and ranking of

alternatives
C SCD

Chiclana et al. [36] 0.5651, 0.7826, 0.6619, 0.4973
A2 ≻ A3 ≻ A1 ≻ A4

26.8227 0.8243

Ma et al. [62] 0.2210, 0.3426, 0.2755, 0.1159
A2 ≻ A3 ≻ A1 ≻ A4

26.9149 0.8274

Xu et al. [16] 0.2210, 0.3426, 0.2827, 0.1537
A2 ≻ A3 ≻ A1 ≻ A4

26.8878 0.8289

Our model 0.2303, 0.3588, 0.2563, 0.1547
A2 ≻ A3 ≻ A1 ≻ A4

27.0200 0.8306

Remark:the ranking of alternatives of Chiclana et al. [36] was computed using a selection operator. We normalized the vector and
then calculated the cosine similarity measure.
DM6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.8 x 0.3 0.7 1

0.2 0.5 0.4 x 0.1 x

x 0.6 0.5 0.2 0.4 0.2

0.7 x 0.8 0.5 x 0.3

0.3 0.9 0.6 x 0.5 x

0 x 0.8 0.7 x 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
here the first decision maker DM1 provides their preference
ith utility values. The second decision maker DM2 provides their
reference with a preference ordering. The third and fourth DMs,
M3 and DM4, provide their preference information in terms of
ultiplicative and incomplete multiplicative preference relations.
he last two DMs, DM3 and DM4, provide their preference in-
ormation in terms of fuzzy and incomplete fuzzy preference
elations. The initial impacts of DMs are regarded as equally
eighted coefficients, i.e. σ (0)

i = 1, i = 1, 2, . . . , 6.
Firstly, we can determine the priority vector to find the nor-

alization matrix. The priority vector is

= (0.1719, 0.0591, 0.1100, 0.1609, 0.2296, 0.2684)

Therefore, the ranking of alternatives is A6 ≻ A5 ≻ A1 ≻

4 ≻ A3 ≻ A2. The result is the same as that obtained using
he ranking obtained by a nonlinear programming model with a
-order and larger norm proposed by [16]. However, our model
an obtain a higher cosine value, indicating that our model has a
igher consistency degree for each DMs (Table 3). Furthermore,
ur method is far simpler than the nonlinear model in [16],
hich must be solved using a genetic algorithm that is difficult
o implement in management practice.

Secondly, the consensus similarity measure of our model is
CD = 0.7895, and the preset threshold should be improved
igher than 0.84.
Thirdly, the feedback information will be return to DMs who

ill be required to modify preference values on account of col-
ective opinion.

For utility value, the transformed modification from collective
s {0.258, 0.089, 0.165, 0.241, 0.344, 0.403}. Hence, the first it-
ration of DM1 will be u(1,1)

1 (DM1) ∈ [0.15, 0.26], u(1,1)
2 (DM1) ∈

0..09, 0.10], u(1,1)
3 (DM1) ∈ [0..17, 0.30], u(1,1)

4 (DM1) ∈

0..20, 0.24], u(1,1)
5 (DM1) ∈ [0..34, 0.35] and u(1,1)

6 (DM1) ∈

0..40, 0.40],respectively.
For preference ordering, the collective opinion can be trans-

ormed as ordering {3, 6, 5, 4, 2, 1}. Hence, the DM2 only needs
o consider whether or not compare the alternatives A1 and A3
gain.
9

For multiplicative preference relations, the collective opinion
should be turn into PCM as follows:

a(G,0)
ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 1 1 1/2

1/3 1 1/2 1/3 1/4 1/5

1/2 2 1 1/2 1/2 1/2

1 3 2 1 1/2 1/2

1 4 2 2 1 1

2 5 2 2 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then the modification interval is provided for DM3 and DM4,

and they can modify their preference following the same princi-
ple.

a(3,1)
ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 [1/3, 1] [1/5, 1] [1/8, 1/2]

1 1/2 [1/3, 1/2] 1/4 [1/7, 1/5]

1 1/2 [1/5, 1/2] [1/6, 1/2]

1 1/2 [1/4, 1/2]

1 [1/3, 1]

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
It is a similar process for incomplete multiplicative relation to

modify corresponding position to existing value in original PCM.
For fuzzy preference relations and incomplete fuzzy prefer-

ence relations, the corresponding fuzzy preference relation is the
following matrix:

pij(G,0)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.7441 0.6099 0.5165 0.4281 0.3904

0.2559 0.5 0.3497 0.2687 0.2047 0.1805

0.3901 0.6503 0.5 0.4059 0.3238 0.2906

0.4835 0.7313 0.5941 0.5 0.4120 0.3748

0.5719 0.7953 0.6762 0.5880 0.5 0.4611

0.6096 0.8195 0.7094 0.6252 0.5389 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For example, the decision maker DM5 should be informed to

correct some preference values by reconsidering alternatives in
terms of the following feedback information. It is similar to the
decision maker DM .
6
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Table 3
Comparative Results with Xu et al. [16].
Approaches Priority vector, ranking of alternatives and cosine values Total cosine value

Xu et al. [16]

ρ = 1 0.1314,0.0431,0.0826,0.1653,0.2477,0.3299 27.9275
A6 ≻ A5 ≻ A4 ≻ A1 ≻ A3 ≻ A2

ρ = 2 0.1525,0.0432,0.1038,0.1666,0.2424,0.2915 28.3055
A6 ≻ A5 ≻ A4 ≻ A1 ≻ A3 ≻ A2

ρ = 3 0.1734,0.0432,0.1151,0.1659,0.2311,0.2712 28.3894
A6 ≻ A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

ρ = 4 0.1878,0.0483,0.1213,0.1744,0.2294,0.2388 28.3616
A6 ≻ A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

Our model 0.1719,0.0591,0.1100,0.1609,0.2296,0.2684 28.4229
A6 ≻ A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

Remark: The ρ = 3 is the best parameter, since its cosine similarity value is the highest in the ranking of alternatives of Xu et al.
[16]. Our method has the same ranking with ρ = 3 and other norms and obtains a higher cosine similarity measure than all the
models in Xu et al. [16].
Table 4
Consensus reaching process by means of Modification.
Iterations Priority vector, ranking of alternatives SCD

t = 0 0.1719,0.0591,0.1100,0.1609,0.2296,0.2684 0.7895
A6 ≻ A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

t = 1 0.1689 ,0.0549 ,0.1098 ,0.1565 ,0.2267 ,0.2832 0.8074
A6 ≻ A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

t = 2 0.1593 ,0.0557 ,0.1119 ,0.1566 ,0.2330 ,0.2835 0.8141
A6 ≻ A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

t = 3 0.1770 ,0.0522 ,0.1276 ,0.1605 ,0.2284 ,0.2543 0.8408
A6 ≻ A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

Remark: In whole process, we assume the preferences of DM1 and DM2 hold and the remaining decision makes a modified
preference relation.
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M5

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.7 0.6 [0.4, 0.5165] [0.4281, 0.8] [0.3904, 0.9]

0.5 [0.3497, 0.4] 0.3 0.2 [0.1805, 1]

0.5 0.4 0.3 [0.2, 0.2906]

0.5 0.4 [0.3, 0.3748]

0.5 [0.2, 0.4611]

0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Lastly, weights are updated based on the equal weight in the

riginal GDM until consensus reaches the preset degree. Table 4
hows the consensus reaching process using the proposed model.
he SCD which measures the agreement of GDM is convergent to
he preset threshold.

.2. Example in real-life management issue

xample 3. Urban resettlement is a key public management
ssue related to social stability, regional economic development,
mprovement of residents’ living conditions and poverty end-
ng [63]. The successful implementation of demolition projects
epends on many complex factors, such as politics, economics,
ociology and Law [64]. One of the key issues of urban resettle-
ent is the formulation of resettlement plan and the agreement
f resettlement plan among residents. However, households have
arious knowledge backgrounds and social status, thus the in-
ividual preferences often have different forms when a set of
lternatives are provided to them. In addition, when a decision
aker is unable to make a judgment on the comparison between

wo alternatives, it will give up for evaluation of the preference
alue among them, resulting in a phenomenon of the missing
reference value. Thus, it is a typical incomplete heterogeneous
roup decision making question.
10
This example aims to evaluate plans for an urban resettlement
roject beginning in July 2017. It aims to reset the ‘‘69 mail box’’
esidence area built in the 1950s, which is the largest shantytown
ocated in the center of the northern old town at Chengdu, China.
his is a commercial project involving households, real estate de-
elopers and government representatives who act as mediators in
he global management process. In order to ensure the democracy
nd satisfaction of all participants, the government stipulated that
he resettlement plan must be agreed with a higher degree of
onsensus. Following a preliminary investigation from February
3, 2017 to March 5, 2017, a simulated demolition conference
as held on June 18, 2017. In this urban resettlement project,
he goal of the GDM process is to propose a resettlement plan or
et of plans that takes into account the opinions of all residents
nd is accepted by residents and real estate developers.
Our example is the decision-making process from the ini-

ial plan determination of residents’ representatives before the
roject was officially implemented. The GDM process for this
roject has four steps. First, real estate developers proposed alter-
atives and convened several representatives, including a neigh-
orhood committee, random residents’ representatives, and a
overnment official to discuss. This project invites 6 members as
epresentatives, and it is necessary to coordinate with the resi-
ents during the entire consultation process. Second, all residents
horoughly reviewed the alternatives developed in the first step
nd expressed their preferences. Third, decision makers evaluate
roup opinions and then re-evaluate individual preferences based
n group opinions. Finally, form preliminary group opinions and
eturn to decision makers. This opinion will be further discussed
n the residents’ meeting and the simulated demolition meeting
f the consensus in GDM is built.

This urban resettlement project has some common features:
1) The project organizer randomly selects some representatives
o form a committee, which represents all participants to discuss
he initial alternative and the negotiation process to reach a
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onsensus. (2) Representatives involved in decision-making are
elected from residents of different strata and industries, and
heir preferences have different representation forms. (3) There
s an incomplete preference relationship, because for some alter-
atives, decision makers cannot make very precise comparison
udgments.

The alternatives are composed of the following 5 plans:
A1: {Buy new house at original address};
A2: {Displacement of new house from original construction

rea};
A3: {Reform by self-organization};
A4: {Cash compensation};
A5: {Replacement of new house at offsite address}.
A residence committee is established and invited to evaluate

he plans of the project. They are asked to provide their pref-
rence relations using four different structures in terms of their
ecision habits. The preference relations are listed as follows:

M1 =
{
0.8147 0.9058 0.127 0.9134 0.6324

}
;

M2 =
{
1 4 3 5 2

}

M3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 1/4 1/2 1/4 1

4 1 x x 2

2 x 1 x 2

4 x x 1 1

1 1/2 1/2 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

M4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 x 1 x 2

x 1 x 1 1/4

1 x 1 2 1/3

x 1 1/2 1 1/2

1/2 4 3 2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

M5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5 0.4 0.6 0.4 0.3

0.6 0.5 0.8 x 0.7

0.4 0.2 0.5 0.4 x

0.6 x 0.6 0.5 0.6

0.7 0.3 x 0.4 0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

M6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5 0.7 x 0.2 0.3

0.3 0.5 0.4 x 0.4

x 0.6 0.5 0.2 0.5

0.8 x 0.8 0.5 0.6

0.7 0.6 0.5 0.4 0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1) t = 0, the collective priority vector of the above preference

elation is w = (0.2117, 0.1784, 0.1535, 0.2368, 0.2197)T , and
he total consensus degree SCD is 0.7705, which is less than
reset consensus degree 0.80. Therefore, feedback information
s provided to the DMs and the corresponding matrixes are as

ollows: aij(3,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 [1/4, 1] [1/2, 1] [1/4, 1] 1

1 x x [1/2, 2]

1 x [1/2, 2]

1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

1

11
ij
(4,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 x 1 x [1, 2]

1 x 1 [1/4, 1/2]

1 [1/2, 2] 1/3

1 [1/2, 1]

1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
pij(5,1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5 [0.4, 0.5390] 0.6 0.4 [0.3.0.4916]

0.5 [0.5341, 0.8] x [0.4523, 0.7]

0.5 0.4 x

0.5 [0.4185, 0.6]

0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
pij(6,1)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 [0.5390, 0.7] x [0.2, 0.4745] [0.3, 0.4916]

0.5 [0.4, 0..5341] x [0.4, 0.4526]

0.5 [0.2, 0.4014] [0.4186, 0.5]

0.5 [0.5171, 0.6]

0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2) t = 1. The preference relations after modification are as

follows:

DM3
(1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 1/4 1/2 1 1

4 1 x x 1/2

2 x 1 x 2

1 x x 1 1

1 2 1/2 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

DM4
(1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 x 1 x 1

x 1 x 1 1/2

1 x 1 2 1/3

x 1 1/2 1 1/2

1 2 3 2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

DM5
(1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5 0.4 0.6 0.4 0.3

0.6 0.5 0.8 x 0.5

0.4 0.2 0.5 0.4 x

0.6 x 0.6 0.5 0.6

0.7 0.5 x 0.4 0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

DM6
(1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5 0.6 x 0.4 0.4

0.4 0.5 0.4 x 0.4

x 0.6 0.5 0.4 0.5

0.6 x 0.6 0.5 0.6

0.6 0.6 0.5 0.4 0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
The collective preference opinion in this iteration is w =

(0.2228, 0.1638, 0.1636, 0.2191, 0.2307)T and the consensus de-
gree is 0.8161. In this step, DM3 agrees to modify its preference

(3,1) (3,2)
a12 = 1/4 to a12 = 1/2 in terms of the modification
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able 5
onsensus reaching process.
Iterations Priority vector, ranking of alternatives SCD

t = 0 0.2117,0.1784,0.1535,0.2368,0.2197 0.7705
A4 ≻ A5 ≻ A1 ≻ A2 ≻ A3

t = 1 0.2125,0.1694 ,0.1606 , 0.2186 ,0.2387 0.7778
A4 ≻ A5 ≻ A1 ≻ A2 ≻ A3

t = 2 0.2228, 0.1638, 0.1636, 0.2191,0.2307 0.8161
A5 ≻ A1 ≻ A4 ≻ A3 ≻ A2

Remark: In whole process, we assume the preferences of DM1 and DM2are
nchanged and the remaining decision makes modified preference relations.

nterval [1/4, 1], and then the decision making is turned into the
econd iteration.
(3) t = 2. The preference relations after modification are as

follows:

DM3
(2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 1/2 1/2 1 1

2 1 x x 1/2

2 x 1 x 2

1 x x 1 1

1 2 1/2 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

M4
(2)

= DM4
(1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 x 1 x 1

x 1 x 1 1/2

1 x 1 2 1/3

x 1 1/2 1 1/2

1 2 3 2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

M5
(2)

= DM5
(1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5 0.4 0.6 0.4 0.3

0.6 0.5 0.8 x 0.5

0.4 0.2 0.5 0.4 x

0.6 x 0.6 0.5 0.6

0.7 0.5 x 0.4 0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

M6
(2)

= DM6
(1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5 0.6 x 0.4 0.4

0.4 0.5 0.4 x 0.4

x 0.6 0.5 0.4 0.5

0.6 x 0.6 0.5 0.6

0.6 0.6 0.5 0.4 0.5

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Following above steps after the preference modification, the

onsensus degree can be improved using iterative preference
odification (Table 5).
Judging from the decision-making process, alternatives 1, 4

nd 5 are the three main options that the decision makers focus
n. Three types of alternatives represent the main opinions: orig-
nal site resettlement, off-site resettlement and monetary com-
ensation. Although the original monetary compensation(A4) was
he mainstream solution in many urban resettlement projects,
fter the group discussions of the representatives, the final con-
ensus opinion was off-site resettlement (A5), original address
emolition(A1), and then monetary compensation. In short, a
eplacement of house property right without extra costs (com-
ining A5 and A1) is the optimal choice for the project to achieve
onsensus.
12
. Convergence test and comparison analysis

In this section, we aim to test the convergence of the above
onsensus reaching model. Moreover, the various consensus mea-
urements and consensus building methods for the GDM with
ncomplete heterogeneous information is also discussed in fol-
owing contexts.

.1. Discussion of consensus measurement

The consensus degree aims to measure the agreement for
ollective opinion among all the DMs. Generally, it is computed
y measuring the distance between individual preference values
nd collective preference values [8,9,23,59,65,66], in addition,
ome authors also proposed a measurement by mean of the total
eviation among individual preference values [13,18,24,61].
However, these measurements are not effective when dealing

ith incomplete heterogeneous preference relations. Firstly, it
s difficult to directly compute the total deviation among het-
rogeneous preference relations, such as the deviation between
reference ordering and multiplication preference relation. Sec-
ndly, the priority vector from the individual preference is not
asy to get since the preference relation is not complete.
Thus, a simple and easy method to measure consensus degree

or incomplete heterogeneous information needs to be developed.
e proposed a SCD measure, which is a total similarity de-
ree between column vector and collective preference (or project
ector of a preference relation in subspace). Compared to the
nsights measuring the distance between individual preference
alues and collective preference values, the SCD does not need
o compute the priority vector from each individual preference
alue and only needs to obtain the collective opinion using model
19) and Eq. (20). In addition, the missing entries in incomplete
reference relations need not be forecasted or filled to evaluate
he consensus degree (Table 6).

.2. Convergence simulation

To test the convergence of the proposed consensus reaching
odel, we have simulated this experiment in order to show the
ffectiveness of our model.
In this experiment, we investigate the trend of CRP with differ-

nt degrees of missing information. The preference relations are
andomly generated and eliminate part of the preference values.
n each preference modification, we simulate it 1000 times, and
hen serve average values as outputs. The simulation algorithm is
isted in Table 7.

The results of the experiments are shown in Table 8. It can
e concluded that our proposed model can improve consensus
uilding for GDM with incomplete heterogeneous preference in-
ormation. In addition, the degree of missing information also
nfluences the consensus reaching in GDM.

Generally, if we preset threshold cr=0.90, the degree can reach
onsensus in less than 9 iterations and the more information the
reference relations provide, the faster the consensus is built.
It can also be observed from Fig. 4 that GDM with 10% missing

nformation has the fastest convergence speed to reach cr. More-
ver, the preference relations with half the preference values
eed the longest iteration times to reach the preset consensus.

.3. Comparisons analysis of different methods

This subsection compares the main properties of several rep-
esentative methods by means of a qualitative analysis and the
esults can be found in Table 9.
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able 6
omparisons of the representative consensus measurements.
Measurements Methods Drawbacks Derive priority

vector of
individual
preference

Use to het-
erogeneous
preference
information

Use to
incomplete
preference
information

ordinal consensus
degree [59],

Order deviation between
individual preference and
collective opinion

Must derive priority
vector from incomplete
preference matrix

✓ ✓ ✓

cardinal consensus
degree[57]

Weights deviation between
individual preference and
collective opinion

✓ ✓ ✓

CR[13][24] Distance among individual
preference relations

only used for
homogeneous
preference matrix

× × ×

Geometric
Compatibility
Index[65]

Logarithm deviation
between individual
preference value and

only used for
multiplicative
preference matrix;
Non-monotonous

× × ✓

SCD Similarity between
individual preference and
collective opinion

× ✓ ✓
Table 7
Algorithm for convergence test.
Table 8
Convergence reaching process.
m = 52,n = 5

IR(%) SCD, cr = 0.90

1 2 3 4 5 6 7 8 9

10 0.8748 0.9002
20 0.8253 0.8565 0.8783 0.9109
30 0.8047 0.8341 0.8442 0.8633 0.8973 0.9112
40 0.7866 0.7996 0.8154 0.8355 0.8656 0.8878 0.8990 0.9201
50 0.7630 0.7795 0.7976 0.8166 0.8477 0.8649 0.8788 0.8905 0.9098
It is observed that our methods can deal with incomplete and
eterogeneous preference relations at the same time. Although
he same situation can be handled by [26], our methods can
btain an analytical solution of the optimization model so that
he computation process can be quickly solved by optimization
19).

Moreover, our method need not derive the individual priority
ector from incomplete heterogeneous preference relations to
ompute consensus degree and collective opinion, and thus it can
fficiently reduce the complexity of CRP. The geometrical insights
sed to integrate individual preference relations and measure
onsensus degree can also help organize and clearly understand
13
the CRP, thus it is a more operational and explainable consensus
building model.

In addition, we compare the proposed methods using a quan-
titative analysis. By analyzing the algorithm complexity of dif-
ferent methods, the theoretical comparison of the calculation
speed of different methods is implemented. Due to our method
aims to deal with incomplete preference relations, we compare
two known methods that can handle this situation (Zhang and
Guo, [17] and Cheng et al. [26]) with our method in theoretical
and numerical experiments.

A consensus reaching procedure includes three flows: Aggre-
gation and feedback adjustments of preference relations, and then
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omparisons of the representative consensus building methods.
Measurements Used to

incomplete
preference
relation

Filling
missing
values

Used to
heterogeneous
preference
relation

Transformation
into unified
preference
structure

Derive
individual
priority vector

Analytical
solution in
optimization

Iterative
consen-
sus
reaching

Herrera-viedma et al. [23] × × ✓ ✓ ✓ × ✓
Dong and Zhang, [9] × × ✓ × ✓ × ✓
Zhang and Guo, [17] ✓ × ✓ × ✓ × ×

Cheng et al. [26] ✓ ✓ × × ✓ × ×

Li et al. [12] × × ✓ × ✓ × ✓
Our method ✓ × ✓ × × ✓ ✓
Table 10
Algorithm complexity.
Algorithm Complexity Remark

Zhang and Guo, [17] At least O(n3) Search algorithm and matrix factorization in optimization model.
whether triangular factorization or the Cholesky decomposition,
is O( 23 n

3) and O( 13 n
3), and the complexity of n × n matrix

multiplication is O(n3). The complexity of naive matrix
multiplication is O(mnp) for matrix Am×n and Bn×p .

Cheng et al. [26] O(3n2
+ n!) The time complexity of two-layer loop statement in their

algorithms is 3n × n. The time complexity of estimation function
and iterative assignment is n!.

Our methods O(n2
+ 2n) The core calculations of our method are unitization, summation,

and normalization of vectors. The complexity of−→p j

 = (−→p n×1
T−→p 1×n)1/2 for vector−→p j is O(n2).

Remark: Similar to Cheng et al. [26], Li et al. [12] and Dong and Zhang, [9] also used a similar aggregation operator, thus, their time complexity
is not much different when dealing with complete preference relation, but it is not discussed and undetermined in their methods if the
preference relation is incomplete.
Fig. 4. The trend of convergence reaching process.

aggregation of updated preference relationships. Evaluating miss-
ing value is needed in Cheng et al. [26] and thus this procedure
is also included in their algorithm analysis. The time complexity
is listed at following Table 7:

The Table 10 shows that our methods can obtain the most
time-saving complexity because an analytical solution in opti-
mization can be solved. Although Cheng et al. [26] also have a
lower time complexity, but the need of their method to evalu-
ate missing preference values complicates the decision-making
process. We must highlight that the previous different methods
target different decision environments and research objects. For
example, our method targets numerical heterogeneous incom-
plete preference relations, Zhang and Guo [17] aims to handle un-
certain (interval and linguistic) heterogeneous incomplete prefer-
ence relations, and incomplete linguistic preference relations are
14
studied in Cheng et al. [26]. Therefore, it is difficult to compare
the performance of the different algorithms on same data sce-
nario through a numerical example or simulation environment.
Through qualitative analysis and time complexity analysis in this
subsection, we can show the advantages of our proposed method.

7. Conclusions

GDM with heterogeneous and incomplete preference relations
has gained an increasing attention in real-life decision ques-
tions because DMs always have different decision habits and
may not give their opinions on some more difficult alternative
comparisons to evaluate.

For utility values, preference orderings, and (incomplete) mul-
tiplicative preference relations and (incomplete) additive pref-
erence relations, we proposed a consensus reaching process in-
cluding preference aggregation, consensus measure, preference
modification and weighting process. A similarity-based optimiza-
tion can be directly used to integrate incomplete heterogeneous
preference relation without the need to fill missing information
and transform heterogeneous information into a uniform form.
We proposed consensus measure which is total similarity de-
gree between individual preference and the collective opinion.
Following this, we propose and prove a preference adjustment
mechanism that satisfies convergence. We illustrate some exam-
ples from the existing literatures and real-life decision question to
show the operation process of the proposed method. A qualitative
comparison and algorithm analysis show our proposed method
is operability and simplicity because it can avoid preference in-
formation loss or disturbance in the transformation process and
decrease the computing complexity of computation.

Further research may include exploring other potential ques-
tions in fields where large-scale participants are involved in GDM.
For example, it needs to consider complex decision behavior
in decision making, such as non-cooperative behavior and self-
confidence. The influences of possible social relationships be-
tween DMs on decision consensus building are also a valuable
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esearch issue. In addition, the development of large-scale group
ecision support systems and management applications is also
orthy of attention.
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