Afficher la notice abrégée

dc.contributor.authorMartínez, Sergio
dc.contributor.authorRueda García, María Del Mar 
dc.contributor.authorArcos Cebrián, Antonio 
dc.contributor.authorMartínez, Helena
dc.date.accessioned2021-05-14T10:33:55Z
dc.date.available2021-05-14T10:33:55Z
dc.date.issued2018-03
dc.identifier.citationMartínez S, Rueda M, Arcos A, Martínez H. Estimating the Proportion of a Categorical Variable With Probit Regression. Sociological Methods & Research. 2020;49(3):809-834. doi:10.1177/0049124118761771es_ES
dc.identifier.urihttp://hdl.handle.net/10481/68524
dc.description.abstractThis article discusses the estimation of a population proportion, using the auxiliary information available, which is incorporated into the estimation procedure by a probit model fit. Three probit regression estimators are considered, using model-based and model-assisted approaches. The theoretical properties of the proposed estimators are derived and discussed. Monte Carlo experiments were carried out for simulated data and for real data taken from a database of confirmed dengue cases in Mexico. The probit estimates give valuable results in comparison to alternative estimators. Finally, the proposed methodology is applied to data obtained from an immigration survey.es_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectAuxiliary informationes_ES
dc.subjectCalibration estimatores_ES
dc.subjectProbit Regressiones_ES
dc.subjectFinite populationes_ES
dc.subjectSampling designes_ES
dc.titleEstimating the proportion of a categorical variable with probit regressiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1177/0049124118761771
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España