
Estimating the proportion of a categorical variable with probit regression

This paper discusses the estimation of a population proportion, using the auxil-
iary information available, which is incorporated into the estimation procedure
by a probit model fit. Three probit regression estimators are considered, us-
ing model-based and model-assisted approaches. The theoretical properties of
the proposed estimators are derived and discussed. Monte Carlo experiments
were carried out for simulated data and for real data taken from a database of
confirmed dengue cases in Mexico. The probit estimates gives valuable results
in comparison to alternative estimators. Finally, the proposed methodology is
applied to data obtained from an immigration survey.

Keywords: Auxiliary information, Calibration estimator, Probit Regression, Fi-
nite population, Sampling design.

1. Introduction

Economic status, education levels and public health conditions are estimated
through surveys conducted by national organisations. Marketing analysts esti-
mate peoples preferences by means of consumer panels. Private agencies deter-
mine the populations opinions on issues such as the economy, school budgets or
changes in legislation. Polls are conducted to ascertain voting intentions. To es-
timate proportions and percentages in all these cases,we use statistical methods
of inference in survey sampling.

Most methods for estimating a population proportion and forming confidence
intervals are based on the assumption of a simple random sample drawn from a
large population. However, this scenario is not always present in practice, i.e.,
many surveys assume a finite population with samples extracted from complex
sampling designs. For example, the National Health and Nutrition Examination
Survey (NHANES) carried out by the National Center for Health Statistics in
the USA, the National Assessment of Educational Progress (NAEP) and the
OECD Programme for International Student Assessment (PISA), all use com-
plex sampling designs (including stratification and multistage sampling). In this
situation, the use of estimation methods involving sampling weights can provide
better estimates than the customary approaches. Sampling weights are needed
to make valid inferences about the populations from which they were drawn.
Appropriate sampling weights are computed to obtain unbiased estimates of
population characteristics.

In many populations, particularly ones that have been previously sampled
or surveyed, a frame of units is available, together with auxiliary data on each
unit. In other cases, a full frame of all units is not directly present but can
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be constructed by sampling in stages and assembling a partial frame at each
stage. In both single and multi-stage sampling, auxiliary data can be used to
construct efficient estimators of totals. The growing availability of information
from census data, administrative registers and previous surveys provides a wide
range of variables concerning the population of interest, which can legitimately
be employed as auxiliary information. An obvious example of the availability
of auxiliary information is that of election polls: the data recorded in previous
elections, electoral section levels, respondents age, sex or past vote recall are
all elements of auxiliary information that can be used to improve the quality of
sampling estimates (e.g. [27], [35], [34].)

In the presence of auxiliary information, various design-based approaches
may be used to improve the precision of estimators at the estimation stage (see
[43]), including ratio, difference and post-stratification methods

These techniques are generally more efficient than other methods which do
not make use of auxiliary information. However, the above-mentioned tech-
niques were originally proposed to estimate means and totals of quantitative
variables, and while their extension to the estimation of proportions is possible,
it requires further investigation. For example, the analyst should be aware of
the risks that may arise when confidence intervals are constructed for a popu-
lation proportion, since limits outside [0, 1] could be achieved. This situation
does not occur with respect to means associated with quantitative variables.

The efficient insertion of the auxiliary information available would improve
the precision of the estimations for the proportion of a categorical variable of in-
terest, but other methods are more appropriate. In fact, the post-stratification
techniques and ratio estimators currently used in the polling industry in order
to reduce deviations do not show enough capacity to mend the biases intro-
duced when collecting data ([30], [31]). A real example was used in [17], namely
a series of CBS/New York Times national polls from the 1988 election cam-
paign, to show how post-stratification and other weighting techniques using
auxiliary information really improve the proportion estimation by correcting
known differences between the sample and the population. This study esti-
mated the proportion of voters who supported the Republican candidate, by
means of weighting schemes incorporating as auxiliary variables the number of
adults and the number of telephone lines in the sampled household, the region
of the country, and the respondents sex, ethnicity, age and education level. All
of these variables have an important effect on levels of nonresponse.

If the expectation of the response variable can be assumed to depend linearly
on the auxiliary variables, as can be the case for continuous response variables,
it is advisable to use the generalised regression ([41]) or the calibration estima-
tor ([17, 40]). However, a linear model is not the best choice for binary response
variables. For such variables we introduce a class of estimators based on a probit
model describing the joint distribution of the class indicators. As is well known
in the sociological literature ([46]) the probit or logit specifications are usually
preferable to the linear model because the former take account of the ceiling
and floor effects on the dependent variable whereas the linear model does not.
Logit and probit regression models for dichotomous data has been extensively
used in sociological and educational studies ( [1], [6], [30], [16]...) although its
use for parameter estimation in finite populations sampling is very sparse ([24]).
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This paper is organised as follows. Section 2 presents the notation used
and briefly reviews the methods proposed in the literature to estimate a pop-
ulation proportion using auxiliary information. Then, Section 3 illustrates the
proposed class of estimators using the probit model, first addressing the design
based approach and then considering the model based approach. The theo-
retical properties of the proposed estimators are also investigated. Section 4
reports the results obtained from an extensive simulation study run on a set of
simulated and real finite populations in which the performance of the proposed
class of estimators is investigated for finite size samples. Section 5 shows an
application of the proposed methods for data from a real survey and, finally,
Section 6 presents the conclusions drawn.

2. Estimation of a proportion under a general sampling design

Consider the scenario of a finite population U = {1, . . . , N} containing N
units. Let A1, . . . , AN denote the values of an attribute of interest A, where
Ak = 1 if the kth unit possesses the attribute A and Ak = 0 otherwise. We also
assume that the sample s is selected according to a specified sampling design
with inclusion probabilities πk and πkl is assumed to be strictly positive. The
aim is to estimate the population proportion of individuals that possess the at-
tribute A, i.e. PA = N−1

∑N
k=1Ak.

The customary design for an unbiased estimator of PA is the Horvitz-Thompson
estimator given by

P̂AHT =
1

N

∑
k∈s

Ak
πk

=
1

N

∑
k∈s

Akdk. (1)

The values dk = 1/πk are known as design weights and are commonly
thought of as the number of population units represented by unit k in the
sample. The weights permit valid inferences to be drawn between the samples
and the respective populations from which they were drawn and, most impor-
tantly, ensure that the results of the assessments are fully representative of the
target populations.

Note that estimator (1) makes no use of the auxiliary information at the
estimation stage.

In a sample survey, auxiliary information is often used at the estimation
stage to increase the precision of estimators of totals or means ([43, 3, 4, 9, 10]),
variance ([44, 42]), covariance ([36]) distribution functions ([45]), quantile ([38]),
etc. by using ratio, regression, difference and calibration estimators.

When the interest is the estimation of a proportion, it is also common to
have auxiliary information related to the attribute of interest.

Let B denote an auxiliary attribute associated with A and values given
by B1, . . . , BN . Ratio type estimators are known methods involving auxiliary
information that possess various desirable properties including an important
gain in efficiency. The ratio estimator for a proportion is defined by

P̂r = R̂PB , (2)
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where R̂ = P̂AHT /P̂BHT , P̂BHT =
∑
k∈s

Bk

πk
and PB = N−1

∑N
k=1Bk. We

assume that the population proportion of individuals that possess the attribute
B, PB , is known from a census or is estimated without error, but we do not
have access to each individual datum.

In [39] it was proposed that regression type estimators could be used to
estimate PA. The regression type estimator of PA is

P̂reg = P̂AHT + b(PB − P̂BHT ), (3)

where b is defined minimising the variance of the estimator.

A more restrictive situation is to assume that unit-specific auxiliary data for
every unit are available. This is known as complete auxiliary information. If
the auxiliaries are known for every unit in the population, this implies that a
sampling frame has been constructed that lists every unit in the survey universe.
In a universe of elementary-level schools, auxiliaries could include the number
of students and teachers, the location of the school (urban, suburban or rural)
and the total budget in a recent year; in election polls, auxiliaries could include
age, sex or past vote recall.

In the following analysis, we use the usual notation in survey sampling. Let y
be the study variable (which in this case corresponds to the presence or absence
of an attribute and takes one of two values, 1 or 0). Let us assume the existence
of a vector x = (x1, x2, . . . xP )

′
of auxiliary information, such that for every

population unit k the value xk = (x1k, x2k, . . . , xPk) is known. We also assume
that the variables included in the vector x can be either numeric or binary
attributes of the same type as the study variable y.

In many populations, some of the most useful auxiliaries are qualitative
rather than quantitative. For example, in surveys of persons, demographic vari-
ables like age group, race-ethnicity, and gender are useful predictors of response
variables. Quantitative x can also be used in combination with qualitative ones.

Beyond reducing the variance and compensating for nonresponse or under-
coverage, calibration on control totals is widely used in practice for its highly de-
sirable feature of producing estimates that are consistent with external sources.
For example, the population may have 100,000 urban residents and 30,000 ru-
ral residents. Because of nonresponse, a simple random sample may obtain
1100 urban residents and 200 rural residents, and thus urban residents are over-
represented in the sample. If the urban and rural areas have different means
(proportions), an unweighted estimator is biased for the purpose of estimating
the population mean (proportion). Calibration is desirable so that demographic
counts and other quantities will be consistent across surveys, and consistent with
the census ([26]).

The calibration method ([17]) considers the estimation of PA by an estimator
given by

P̂CAL =
1

N

∑
k∈s

ωkAk

where the calibration weights ωk are chosen to minimise an average distance
Φs from the basic design weights dk = 1/πk, subject to a set of calibration
constraints. Thus, the calibration technique replaces the basic weights dk = 1

πk
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from the Horvitz-Thompson with a new system of weights ωk minimising the
chi-square distance (in practice, this is the most commonly used distance)

χ =
∑
k∈s

(ωk − dk)2

dkqk
(4)

subject to the condition

X =
1

N

∑
k∈U

xk =
1

N

∑
k∈s

ωkxk (5)

where qk are known positive constants unrelated to dk.

Calibration estimators have some desirable properties. First, weights satis-
fying (5) provide sample estimates for the totals of the auxiliary variables in xk
that exactly match the known population totals for these variables. If the pop-
ulation totals of the auxiliary variables were published before the survey results
are produced, then using calibration estimators for the survey guarantees that
the survey estimates are coherent with those already in the public domain. The
second desirable property is simplicity, namely the fact that given the weights
ωk calibration estimates are linear in y. This means that each survey record
can carry a single weight to estimate all survey variables. The third property
of calibration estimators is their flexibility to incorporate auxiliary information,
to include continuous, discrete or both types of benchmark variables at the
same time. If the auxiliary totals represent counts of the numbers of population
units in certain classes of categorical (discrete) variables, then the values of the
corresponding x variables are simply indicators of the units that are members
of the corresponding classes. Calibration estimators also yield some degree of
integration, in the sense that some widely used estimators are special cases, for
example, ratio, regression and poststratification estimators.

It is an implicit assumption in the calibration that the study variable y and
x are linearly related ([47]); however, since the vector x includes numeric and
binary attributes and the characteristic of study y is also a binary attribute, the
use of a linear model is difficult to justify.

In the binary case [24] considered a logistic regression model and defined the
logistic generalised regression estimator (LGREG) given by

P̂LGREG =
1

N

(∑
k∈U

plk +
∑
k∈s

Ak − plk
πk

)
(6)

where

plk =
exp(xkβ̂)

1 + exp(xkβ̂)
(7)

and where β̂ is the BLUP estimator of the β parameter of the logistic regression.
[18] provided some codes to compute the LGREG estimator and a Monte Carlo
study to empirically investigate the accuracy of the confidence intervals when
HT and LGREG estimators are used.
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3. Estimation of a proportion by using a probit model

In the following we assume the existence of a vector x = (x1, x2, . . . xP )
′

of auxiliary information, such that for every population unit k the value xk =
(x1k, x2k, . . . , xPk) is known. We also assume that the variables included in the
vector x can be either numeric or binary attributes of the same type as the
study attribute A. For this purpose, we consider a sample s = {1, 2, . . . , n}
selected according to a specified sampling design with inclusion probabilities πk
and πkl that are assumed to be strictly positive. The value Ak is only available
for the sample units.

Under this scenario, we can consider the prediction theory for sampling sur-
veys. The general prediction theory is based on superpopulation models, in
which it is assumed that the population under study y = (y1, ..., yN )′ consti-
tutes a body of super-population random variables Y = (Y1, ..., YN )′ containing
a super-population model ξ. The value of the variable of interest, associated
with the k-th unit of the population, is comprised of a deterministic element
µ(xk) (known) and a random element, Yk = µ(xk) + ek, k = 1, ..., N. The
random vector e = (e1, ..., eN ) is assumed to have a zero mean and a positive
definite covariance matrix which is diagonal (Yk are mutually independent).

A superpopulation model is a way of formalising the relationship between a
target variable and auxiliary data. For example, in a survey of hospitals, the
number of patients discharged in a particular calendar quarter may be related
to the number of beds in the hospital and the type of hospital (e.g., general
medical and surgical, rehabilitation, children’s hospital, military, etc.). Super-
population models have been used in previous sociological studies: thus, [13]
used the superpopulation approach to estimate the average costumer satisfac-
tion from a probability sample, and [32] used superpopulation models to reduce
nonresponse bias in electoral pools.

Traditionally, parametric methods utilise regression models to incorporate
auxiliary information: Eξ(Yk) = µk = βxk (Eξ denotes the expected value with
respect to the model). The selection of a linear model is fully justified for a
continuous response variable.

As is well known in sociological literature ([46]), for binary measurements a
linear model might be unrealistic, and ordinarily the logistic or the probit model
would be preferred. For example, we might want to estimate the proportion of
students with learning disabilities. For such 0-1 Y variables, a logistic or other
type of nonlinear model usually produces a better fit than a linear model. This
type of estimator can be prediction-unbiased if a linear model holds, but can
be seriously biased if, for example, the correct underlying model is logistic. An-
other problem with using a linear model for a binary variable in the presence of
auxiliaries is that the predicted value for a given unit need not be confined to
[0,1], as a probability should be.

In typical settings, the data do not differentiate between probit and logit
conditional link functions. Probit models are obtained by discretising a latent
normal distribution, a process that has been used extensively in biometrics and
econometrics (see [5, 28] and [22]). Indeed, if we consider a random variable zk
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following a normal regression model, we only observe the variable Ak = 1 when
zk > 0). The difference between logit and probit models is to be found on this.
For example, if Y were whether a child was born to a woman in a given year,
the logit model would express the effects of X on the log of the odds of a birth
versus a non-birth. In the probit model, a unit change in X produces a ”b”
unit change in the cumulative normal probability, or Z score, that Y will fall in
a particular category. For example, the probit model would express the effect
of a unit change in X on the cumulative normal probability that a woman will
give birth within a year.

Probit models have attractive properties compared to logit models ([11]), al-
though the literature on probit models in survey sampling is not very extensive([12]).

We assume that the relationship between the attribute A (the main variable
y) and the auxiliary vector x can be described by the probit model:

µk = Eξ(Yk) = P (Ak = 1) = F (β
′
· xk), (k = 1, ..., N) (8)

where F is the normal-standard distribution function and β is a parameter
vector.

We now define a new estimator for a proportion, using the probit regression
model. To do so, we consider the estimation of the superpopulation parameter β
by the units of the sample s. We estimate β by maximising the π-weighted like-
lihood ([20], [29]). The sample estimator β̂ of β is the solution to the following
equation

∑
k∈s

dk ·
f(β

′
· xk)

F (β
′
· xk)(1− F (β

′
· xk))

(Ak − F (β
′
· xk)) · xk = 0 (9)

where the function f denotes the normal-standard density function. The value
of β̂ is thus obtained either by the standard Newton-Raphson method or by
Fisher’s scoring method. Under certain regularity conditions (similar to those

used by [7]), it can be shown that β̂ = β +O(n−1/2) ([48]).

With the estimation β̂ of β, we consider the following auxiliary variable

pk = P̂ [Ak = 1] = F (β̂′ · xk) (10)

Since the vector xk is known for all units of the population U , the values
pk are available ∀k ∈ U and we propose the use of the values pk to obtain new
estimators for PA. Statistical inference procedures can be considered in which
stochastic elements are introduced through the randomisation aspect (the fixed
population approach) or the stochastic model (the superpopulation approach).
It is in the area of sample surveys where the debate between randomisation-
based and model-based inference is most sharply drawn (eg. [25]). The theo-
retical underpinnings of the two approaches remain strikingly different. We will
therefore consider both points of view and propose several estimators based on
each approach.

The predictive probit estimator
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The first estimator considered in this section is a model based estimator. The
proposed estimator is based on the following idea: the population proportion to
be estimated is given by

PA =
1

N

∑
U

Ak =
1

N

(∑
k∈s

Ak +
∑

k∈U−s

Ak

)
,

where U denotes the set of N units in the population. If a sample s of n units is
selected, we can observe the sample total,

∑
sAk. The total for the remainder

of the population, U − s, is equal to
∑
U−sAk, which is unknown and must be

estimated using the predicted values pk instead of the true values.
Thus we define the probit predictive estimator:

P̂PP =
1

N

(∑
k∈s

Ak +
∑

k∈U−s

pk

)
(11)

Theorem 1. Assume the working model used to construct the esti-
mators has the general structure (8); then, the predictive estimator
is an asymptotically model unbiased estimator for the proportion PA.

Proof.

Consider the difference:

(P̂PP − PA) =
1

N
(
∑
k∈s

Ak +
∑

k∈U−s

pk −
∑
k∈s

Ak −
∑

k∈U−s

Ak) =

1

N

∑
k∈s

(pk −Ak) =
1

N
(
∑

k∈U−s

(pk − µk) + (µk −Ak))

Thus

Eξ(P̂PP − PA) =
1

N

∑
j∈U−s

Eξ(pk − µk) +
1

N

∑
j∈U−s

Eξ(µk −Ak) =

1

N

∑
j∈U−s

Eξ(pk − µk) ' 0

because Eξ(pk) ' µk,∀k ∈ U .

This estimator is similar to the model-based estimator proposed by [23] but
replacing the censored regression or the tobit model with the probit model.

The model-assisted probit estimator

The second case we consider is a model-assisted estimator. Now we write
the population proportion as
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PA =
1

N

(∑
k∈U

pk +
∑
k∈U

(Ak − pk)

)
.

The proxy total
∑
U pk is known (as the auxiliary vector xk for all units in the

population) whereas the total of the differences
∑
U (Ak−pk) is unknown (since

Ak are unknown), but we can use the Horvitz-Thompson estimator to form an
unbiased estimator of the unknown term.

Thus, we define the model-assisted probit estimator given by:

P̂MAP =
1

N

(∑
k∈U

pk +
∑
k∈s

dk(Ak − pk)

)
(12)

where pk are the values given by (10).

The estimator P̂MAP has two parts: a sum of estimated expectations for the
population and an adjustment term

∑
k∈s dk(Ak−pk). The obvious motivation

for this construction is the prospect of achieving a highly accurate estimate
P̂MAP through a close fitting assisting model that leaves small residuals Ak−pk.

This estimator is similar to the LGREG estimator but changes the plk-values
to pk values.

Theorem 2. The estimator P̂MAP is approximately design unbiased
for PA with the approximate design variance:

AVd(P̂MAP ) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkEk)(dlEl) (13)

where ∆kl = πkl − πkπl and Ek = (Ak − F (β
′ · xk)) are the population fit

residuals.

Proof.

Denote by Ed and Vd the expected value and the variance with respect to
the design.

Ed(P̂MAP ) = Ed(
1

N
(
∑
k∈U

pk +
∑
k∈s

dk(Ak − pk))) =

1

N
(
∑
k∈U

pk+Ed(
∑
k∈s

dkAk)−Ed(
∑
k∈s

dkpk)) =
1

N

∑
k∈U

pk+
1

N

∑
k∈U

Ak−
1

N

∑
k∈U

pk = PA.

On the other hand:

Vd(P̂MAP ) = Vd(
∑
k∈s

dk(Ak−pk)) ' Vd(
∑
k∈s

dkEk) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkEk)(dlEl)
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from the properties of the Horvitz-Thompson estimator.

From this expression we can obtain the variance estimator:

V̂ (P̂MAP ) =
1

N2

∑
k∈s

∑
l∈s

∆kl

πkl
(dkek)(dlel) (14)

with ek = Ak − pk the sample fit residuals.

This estimator can be seen as a particular case of the generalised difference
estimator ([15], pag 24), in which we consider (p1, ..., pN ) instead of the constant
vector.

The calibrated probit estimator

Using the idea of model-calibration given in [47], we now define a new model-
calibration estimator for PA using a probit model.

The idea underlying our calibration estimator is that we wish to find new
weights ωk that are similar to the design weights dk(so as to preserve the un-
biased property of the Horvitz-Thompson estimator) and that give perfect esti-
mations for the predicted values, that is 1

N

∑
k∈s ωkpk = 1

N

∑
k∈U pk. This con-

dition implies that the calibration estimator for our proportion, 1
N

∑
k∈s ωkAk

will be close to PA if the predicted values pk are close to the Ak values.
To obtain this calibration estimator, we consider the minimisation of (4)

subject to the following conditions:

1

N

∑
k∈s

ωkpk = P̄ =
1

N

∑
k∈U

pk

1

N

∑
k∈s

ωk = 1.

By taking the Euclidean (or χ2-statistic) type of distance function, an ana-
lytic solution to this problem can be obtained. Denoting by

C1 =
∑
k∈s

dkqk ; C2 =
∑
k∈s

dkqkpk ; C3 =
∑
k∈s

dkqkp
2
k and P̄HT =

1

N

∑
k∈s

dkpk

the new calibration weights are:

ωk = dk + dkqkpkN

[
(P̄ − P̄HT ) · C1 −

(
1− 1

N
·
∑
k∈s

dk

)
· C2

]
[C3 · C1 − C2

2 ]
+

+ dkqkN

[(
1− 1

N
·
∑
k∈s

dk

)
· C3 − (P̄ − P̄HT ) · C2

]
[C3 · C1 − C2

2 ]
(15)
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and the calibrated estimator for PA is:

P̂CP = P̂AHT + (P̄ − P̄HT )

[
C1 ·

∑
k∈s

dkqkpkAk − C2 ·
∑
k∈s

dkqkAk

]
[C3 · C1 − C2

2 ]

+

(
1− 1

N
·
∑
k∈s

dk

)
[
C3 ·

∑
k∈s

dkqkAk − C2 ·
∑
k∈s

dkqkpkAk

]
[C3 · C1 − C2

2 ]

= P̂AHT +

(
1− 1

N
·
∑
k∈s

dk

)
· D̂1 + (P̄ − P̄HT ) · D̂2 (16)

Theorem 3. If the basic design weights satisfy the condition that the
Horvitz-Thompson estimator is asymptotically normally distributed,
the estimator P̂CP is an asymptotically unbiased estimator for PA and
its asymptotic variance is given by

AV (P̂CP ) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkEk)(dlEl) (17)

where ∆kl = πkl − πkπl; Ek = Ak −D1 −D2 · pk and

D1 =

[
CU ·

∑
k∈U

qkAk −BU ·
∑
k∈U

qkpkAk

]
[CU ·AU −B2

U ]

D2 =

[
AU ·

∑
k∈U

qkpkAk −BU ·
∑
k∈U

qkAk

]
[CU ·AU −B2

U ]

AU =
∑
k∈U

qk ; BU =
∑
k∈U

qkpk and CU =
∑
k∈U

qkp
2
k

Proof.

β̂ = β + O(n−1/2), the function F (β̂′ · xk) verifies condition ii) and the de-
sign weights verify condition iii) of Theorem 1 of [47]. Thus we can apply this

Theorem and prove that P̂CP = P̂AHT +O(n−1/2) and obtain an asymptotically
design-unbiased estimator for PA.

In order to obtain the variance of this estimator, we apply the formula (3.1)
of the variance to the calibration estimator given in [17], and substitute Ek =
yk − β

′ · xk by the new residuals Ek = Ak −D1 −D2 · pk.
The asymptotic variance given by (17) can be estimated by

V̂ (P̂CP ) =
1

N2

∑
k∈s

∑
l∈s

∆kl

πkl
(dkek)(dlel) (18)

with ek = Ak − D̂1 − D̂2 · pk.
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4. Simulation studies

An extensive simulation study was conducted to analyse the performance of
the proposed estimators for surveys from finite populations. Our simulations
are programmed in R, with some new code developed to compute the estimators
to be compared.

To evaluate the performance of the proposed estimators for different scenar-
ios, after the simulations have been performed, it is necessary to consider the
criteria for evaluating the performance of the results obtained, using each of the
statistical approaches being studied. The comparison of the simulated results
with the true values used to simulate the data provides a measure of the per-
formance and precision of the simulation process. Performance measures often
include an assessment of bias and accuracy. In general, the expectation of the
simulated estimates is the main aspect of interest and hence the average of the
estimates for all simulations is used to calculate accuracy measures, such as the
bias. Methods that result in an unbiased estimate with large variability or in a
biased estimate with little variability may be considered of little practical use.
Let us now consider the most commonly used performance measures.

Assessment of bias. The bias is the deviation in an estimate from the true
quantity, and can indicate the performance of the methods being assessed. One
assessment of bias is the difference between the average estimate and the true
value. Another approach is to calculate the bias as a percentage of the true
value, providing the true value is not equal to zero. The bias as a percentage
can be more informative than the former approach.

Assessment of accuracy. The mean squared error (MSE) provides a use-
ful measure of overall accuracy, as it incorporates measures of both bias and
variability.

The performance of each proportion estimator was measured and compared
in terms of relative bias (RB) and relative efficiency (RE). The simulated values
of RB and RE for a particular proportion estimator T were computed as

RB = B−1
B∑
b=1

(T b − P )/P, RE = MSE(P̂HT )/MSE(T b)

where P is the true value for the estimate of interest, MSE(T b) = B−1
∑B
b=1(T b−

P )2, MSE(P̂HT ) = B−1
∑B
b=1(P̂ bHT − P )2, and T b and P̂ bHT are the values of

T and P̂HT from the bth simulation, respectively.
RE is the relative efficiency of each estimator with respect to the Horvitz-

Thompson (HT) estimator. In either case RE > 100 means the estimator is
preferred (the estimator is inefficient relative to the Horvitz-Thompson (HT)
estimator). The gain in efficiency, relative to the Horvitz-Thompson (HT) esti-
mator was computed as: GE = RE -100.

The following estimators were compared: Horvitz-Thompson (HT), calibra-
tion (CAL), regression (REG) , calibration probit (CP), model assisted probit
regression (MAP), predictive probit (PP) and logistic regression (LGREG)

The first simulation studies conducted were based on five simulated popula-
tions of N = 10000 units, as previously used by [31] and by [2] (see these papers
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for a more detailed description). These populations covered a wide range of sce-
narios, including small and large Cramer V coefficients between the attribute of
interest and the auxiliary attribute.

For example, for a population proportion of the attribute A as P = 0.1, a
random sample of 10000 units from a Bernoulli distribution with parameter P
= 0.1 is obtained. Then, the attribute B whose Cramer’s V coefficient with
A is 0.9 can be obtained by changing just a few values in A. The progressive
change of more values in A can allow found B that verify that the Cramer’s V
coefficient with A is 0.8, 0.7, 0.6 and 0.5, respectively.

For each of the 5 populations, B = 10000 samples were selected to compare
the various estimators in terms of relative bias (RB) and relative efficiency (RE).

Two survey designs were performed: simple random sampling without re-
placement and unequal probability sampling with Midzuno’s method of sizes
n =50, 75, 100 and 150. Samples in Midzuno sampling are selected with inclu-
sion probabilities proportional to variable zk = N(300, 200), for k = 1, . . . , N
unrelated with the variable of interest.

Tables 1 and 2 give the values of RB, RE and GE in percentages for the
binomial populations under the two survey designs considered.

The results derived from this simulation study gave values for RB within a
reasonable range. All the estimators considered produced absolute relative bias
values of less than 0.5%.

Incorporating no auxiliary information, HT estimators usually have a larger
MSE than calibration, probit and logit regression estimators. With large
Cramer’s V coefficient (φ) values, all the estimators that use auxiliary infor-
mation produce good results. It can also be seen that as φ increases, all the
estimators achieve greater precision, which is particularly marked for very high
correlations.

Of all the estimates that use auxiliary information, the calibration estimator
has the lowest degree of efficiency. Although it performs better than the HT
estimator on most occasions (expect when φ=0.5), the others produce a smaller
MSE, and then a larger gain in efficiency.

The regression (REG), calibration probit (CP), model-assisted probit re-
gression (MAP), predictive probit (PP) and logistic regression (LGREG) es-
timators perform very well in all cases. For high correlations, the efficiency of
the estimators is similar. All the proposed probit estimators behave well, but
two stand out: the calibration probit and the model-assisted probit regression
estimators have similar levels of efficiency and achieve the best results for all
sample sizes, all populations and all survey designs.

The sample size produces a clear effect on the behaviour of the estimators:
as the sample size increases, so does the efficiency of the estimators.

The second population used in this simulation study was a real database
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of size N = 10850 referring to dengue cases confirmed by the Rio State Pub-
lic Health laboratory in Guerrero State, Mexico (2006). The data reflect the
records of patients diagnosed with dengue and the characteristics associated
with symptoms of a typical case of dengue.

The main variable is the type of dengue (classical, Y=1, or haemorrhagic,
Y=0). For the selection of the auxiliary variable, we took into consideration the
relationship between the main variable and the different auxiliary variables, from
a probit regression model. Thus, we selected the variables that best classified
the patients (if the patient had headache, x1, abdominal pain x2 or diarrhoea
x3). We use the variable body temperature to assign the probability in the
Midzuno sampling.

In this population, the results are slightly different. The relative biases
remain negligible (less than 0.5 %) but the efficiency is different:
• The calibration estimator performs poorly. Even when n =1000 the cali-

bration estimator is worse than the HT estimator.

• The remaining estimates are more efficient than the HT estimator but the
gain in efficiency is not as great as in the previous example.

• The proposed probit estimators often work better than the other esti-
mators. The calibration probit and the model-assisted probit regression
estimators have similar levels of efficiency, but the predictive estimator is
the most efficient for all sample sizes and for two designs.

In summary, we conclude that the question of the associations between the
variables is the most important factor influencing the behaviour of the proposed
probit estimators. Even for moderate correlation values, the proposed estima-
tors are more efficient than the HT estimator. Of the three estimators proposed,
the calibration probit and the model-assisted probit regression present the same
levels of efficiency, and none are outstanding in this respect.

5. Application in an immigration survey

In this section we apply the proposed estimators to data corresponding to
a survey on perceptions of immigration in a certain region in Spain. A sample
of size n = 1919 was selected from a population with size N = 4982920, using
stratified random sampling.

Among the topics of interest in the survey is the question of estimating the
percentage of citizens who believe that the authorities should make immigration
more difficult by imposing stricter conditions. The auxiliary variables available
are the respondent’s sex and age (in four categories). Both variables were ob-
served in the sample and their totals are known for each province (stratum).

We compared estimates of the mean of this binary variable of interest with-
out using any auxiliary information and also using the auxiliary information
provided by age and sex (see Table 4). The confidence intervals (and their
length) based on Jackknife variance estimation were also determined. It should
be noted that the proportion to be estimated is very small. The probit point
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estimates are at least half a percentage point below the estimates provided by
the HT estimator (and those of the CAL estimator). Half a percentage point
in this population corresponds to about 25000 people. Moreover, the length of
the confidence intervals is around 2 percentage points. Reducing this length by
a quarter percentage point, as is achieved with the PP estimator, may be of
considerable significance.

Table 4 shows that the inclusion of auxiliary information provides estimates
with shorter confidence intervals except in the case of the usual calibration
estimator (as was to be expected, because the calibration technique assumes
that the response variable depends linearly on the auxiliary variables). This
is particularly true when probit regression is used. By including all available
auxiliary information by means of a probit model, we obtained the best empirical
performance and an estimate that is coherent with that provided by the other
models.

6. Conclusions

The estimation of proportions is an important subject with many practical
applications. The Horvitz-Thompson estimators for the mean or total can be
improved by using the general regression estimator, because this estimator can
incorporate auxiliary information. In estimating a proportion, we might also
wish to incorporate auxiliary information and it is more natural to motivate the
use of logistic and probit models for a discrete variable.

In this paper, we show how this could be done, using various probit regres-
sion estimators, based on a probit model. We propose three estimators: P̂PP ,
P̂MAP and P̂CP . The first is a model-based estimator and the other two are
design based.

In the simulation section, we use several populations to show that smaller
variances might be obtained with the probit regression estimator than with the
HT estimator or with other classical regression estimators. In our empirical
study, the probit estimators gave accurate estimations under various sampling
plans and are competitive with the logistic estimator. In conclusion, when
estimating a proportion, the use of auxiliary information may provide large
gains in efficiency, while the choice of an appropriate model may enable smaller
variances to be achieved. We also conclude that both approaches to using
probit models seem plausible, and that both model-based and model-assisted
philosophies of statistical analysis can be adopted, according to the practical
conditions in question.
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Table 1: rb %, re % and ge % respect to Horvitz-Thompson estimator, for
several sample sizes of the estimators compared: Horvitz-Thompson (HT), cali-
bration (CAL), regression (REG) , calibration probit (CP), model assisted pro-
bit regression (MAP), predictive probit (PP) and logistic regression (LGREG).
srswor from the binomial populations.

RB RE GE RB RE GE RB RE GE

φ n = 50 n = 100 n = 150

HT 0.5 0.00 100.00 0.00 0.06 100.00 0.00 0.10 100.00 0.00
CAL 0.05 92.56 -3.44 0.11 93.57 -2.43 0.21 93.15 -6.85
REG -0.02 103.08 3.08 0.05 106.74 6.74 0.13 108.21 8.21
CP -0.02 103.13 3.13 0.05 106.80 6.80 0.13 108.21 8.21
MAP -0.02 103.09 3.09 0.05 106.79 6.79 0.13 108.21 8.21
PP 0.23 103.04 3.04 0.17 106.77 6.77 0.20 108.12 8.12
LGREG -0.02 103.07 3.07 0.05 106.74 6.74 0.13 108.20 8.20

HT 0.6 -0.25 100.00 0.00 -0.18 100.00 0.00 -0.16 100.00 0.00
CAL -0.19 101.38 1.38 -0.19 103.00 3.00 -0.29 103.74 3.74
REG -0.25 121.27 21.27 -0.21 128.94 28.94 -0.14 129.45 29.45
CP -0.26 121.65 21.65 -0.21 129.08 29.08 -0.14 129.53 29.53
MAP -0.26 121.62 21.62 -0.21 129.05 29.05 -0.14 129.55 29.55
PP -0.04 121.39 21.39 -0.14 128.75 8.75 -0.11 129.38 29.38
LGREG -0.25 121.27 21.27 -0.20 128.92 28.92 -0.14 129.46 29.46

HT 0.7 0.35 100.00 0.00 0.15 100.00 0.00 0.24 100.00 0.00
CAL 0.37 120.03 20.03 0.20 119.03 19.03 0.20 122.61 22.61
REG 0.28 146.92 46.92 0.11 153.50 53.50 0.21 159.78 59.78
CP 0.27 147.81 47.81 0.10 153.82 53.82 0.21 159.85 59.85
MAP 0.27 147.69 47.69 0.10 153.86 53.86 0.21 159.79 59.79
PP 0.35 145.76 45.76 0.11 151.68 51.68 0.20 157.90 57.90
LGREG 0.29 146.88 46.88 0.11 153.54 53.54 0.21 159.74 59.74

HT 0.8 0.10 100.00 0.00 -0.07 100.00 0.00 0.06 100.00 0.00
CAL -0.13 154.26 54.26 -0.17 153.93 53.93 -0.10 160.89 60.89
REG 0.12 187.30 87.30 0.05 199.84 99.84 0.02 212.29 112.29
CP 0.08 189.01 89.01 0.02 201.38 101.38 0.00 212.65 112.65
MAP 0.09 188.84 88.84 0.02 201.40 101.40 0.01 212.75 112.75
PP 0.29 184.23 84.23 0.19 196.53 96.53 0.17 207.74 107.74
LGREG 0.13 187.30 87.30 0.05 199.91 99.91 0.03 212.41 112.41

HT 0.9 0.17 100.00 0.00 0.18 100.00 0.00 0.17 100.00 0.00
CAL -0.02 275.73 175.73 0.04 275.57 175.57 -0.04 276.90 176.90
REG -0.39 308.61 208.61 -0.23 340.37 240.37 -0.22 379.22 279.22
CP -0.37 309.40 209.40 -0.19 344.47 244.47 -0.18 381.35 281.35
MAP -0.37 309.44 209.44 -0.19 344.26 244.26 -0.18 380.92 280.92
PP -0.45 300.47 200.47 -0.32 328.52 228.52 -0.34 360.51 260.51
LGREG -0.39 308.84 208.84 -0.23 340.44 240.44 -0.22 379.04 279.04
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Table 2: rb %, re % and GE respect to Horvitz-Thompson estimator, for sev-
eral sample sizes of the estimators compared: Horvitz-Thompson (HT), calibra-
tion (CAL), regression (REG) , calibration probit (CP), model assisted probit
regression (MAP), predictive probit (PP) and logistic regression (LGREG).
Midzuno sampling schemes from binomial populations.

RB RE GE RB RE GE RB RE GE

φ n = 50 n = 100 n = 150

HT 0.5 0.06 100.00 0.00 0.11 0.00 100.00 -0.17 100.00 0.00
CAL 0.02 92.83 -7.17 0.04 94.58 -5.42 -0.12 94.80 -5.20
REG -0.01 103.65 3.65 0.02 108.55 8.55 -0.13 110.16 10.16
CP -0.01 103.74 3.74 0.03 108.61 8.61 -0.13 110.17 10.17
MAP -0.01 103.67 3.67 0.03 108.62 8.62 -0.13 110.16 10.16
PP -0.01 103.43 3.43 0.02 108.51 8.51 -0.13 110.03 10.03
LGREG -0.02 103.63 3.63 0.02 108.55 8.55 -0.13 110.15 10.15

HT 0.6 0.02 100.00 0.00 0.07 100.00 0.00 0.10 100.00 0.00
CAL -0.03 101.69 1.69 0.03 103.52 3.52 0.14 104.33 4.33
REG -0.07 123.66 23.66 0.02 130.09 30.09 0.14 135.12 35.12
CP -0.08 124.14 24.14 0.01 130.28 30.28 0.14 135.16 35.16
MAP -0.08 124.07 24.07 0.01 130.30 30.30 0.14 135.18 35.18
PP -0.14 123.05 23.05 -0.03 129.61 29.61 0.09 134.42 34.42
LGREG -0.07 123.64 23.64 0.02 130.11 30.11 0.14 135.14 35.14

HT 0.7 -0.24 100.00 0.00 -0.10 100.00 0.00 0.08 100.00 0.00
CAL -0.08 120.72 20.72 -0.14 118.69 18.69 0.05 119.94 19.94
REG -0.24 144.03 44.03 -0.14 154.83 54.83 0.04 158.67 58.67
CP -0.25 145.30 45.30 -0.14 155.15 55.15 0.04 158.60 58.60
MAP -0.25 145.32 45.32 -0.14 155.15 55.15 0.04 158.63 58.63
PP -0.31 143.09 43.09 -0.21 152.47 52.47 -0.03 155.61 55.61
LGREG -0.25 144.13 44.13 -0.14 154.85 54.85 0.04 158.71 58.71

HT 0.8 0.00 100.00 0.00 0.03 100.00 0.00 -0.16 100.00 0.00
CAL -0.02 159.35 59.35 0.02 161.20 61.20 -0.14 160.47 60.47
REG 0.23 185.89 85.89 0.13 213.98 113.98 -0.02 218.74 118.74
CP 0.17 187.62 87.62 0.08 215.55 115.55 -0.05 218.88 118.88
MAP 0.18 187.68 87.68 0.09 215.60 115.60 -0.05 218.89 118.89
PP 0.21 182.68 82.68 0.13 208.93 108.93 -0.01 211.42 111.42
LGREG 0.23 186.09 86.09 0.13 214.07 114.07 -0.02 218.80 118.80

HT 0.9 0.11 100.00 0.00 -0.01 100.00 0.00 0.13 100.00 0.00
CAL 0.12 282.33 182.33 -0.04 279.27 179.27 -0.03 280.96 180.96
REG -0.31 298.34 198.34 -0.35 349.31 249.31 -0.22 386.95 286.95
CP -0.30 300.45 200.45 -0.29 353.25 253.25 -0.18 389.10 289.10
MAP -0.30 300.79 200.79 -0.30 353.42 253.42 -0.18 389.02 289.02
PP -0.38 291.62 191.62 -0.44 331.28 231.28 -0.32 362.28 262.28
LGREG -0.31 298.80 198.80 -0.35 349.71 249.71 -0.22 387.14 287.14
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Table 3: rb %, re % and GE respect to Horvitz-Thompson estimator, for sev-
eral sample sizes of the estimators compared: Horvitz-Thompson (HT), calibra-
tion (CAL), regression (REG) , calibration probit (CP), model assisted probit
regression (MAP), predictive probit (PP) and logistic regression (LGREG).
SRSWOR and Midzuno sampling schemes from DENGUE population.

Simple random sampling

RB RE GE RB RE GE RB RE GE

n=500 n=600 n=700

HT 0.11 100.00 0.00 0.11 100.00 0.00 0.06 100.00 0.00
CAL 0.10 99.19 -0.81 0.11 99.57 -0.43 0.07 99.20 -0.80
REG 0.11 105.91 5.91 0.04 105.72 5.72 0.06 104.97 4.97
CP 0.11 105.98 5.98 0.04 105.82 5.82 0.06 105.02 5.02
MAP 0.11 105.95 5.95 0.04 105.79 5.79 0.06 104.94 4.94
PP 0.09 106.19 6.19 0.02 106.02 6.02 0.04 105.15 5.15
LGREG 0.12 105.86 5.86 0.05 105.69 5.69 0.07 104.89 4.89

n=800 n=900 n=1000

HT 0.10 100.00 0.00 -0.13 100.00 0.00 -0.01 100.00 0.00
CAL 0.10 99.44 -0.56 -0.14 99.49 -0.51 0.00 99.49 -0.51
REG 0.10 106.52 6.52 -0.14 106.28 6.28 -0.05 105.41 5.41
CP 0.10 106.60 6.60 -0.14 106.34 6.34 -0.05 105.48 5.48
MAP 0.11 106.61 6.61 -0.14 106.34 6.34 -0.05 105.41 5.41
PP 0.08 106.82 6.82 -0.16 106.54 6.54 -0.07 105.62 5.62
LGREG 0.11 106.52 6.52 -0.14 106.27 6.27 -0.05 105.34 5.34

Midzuno

n=500 n=600 n=700

HT 0.31 100.00 0.00 -0.03 100.00 0.00 -0.05 100.00 0.00
CAL 0.31 99.27 -0.73 -0.05 99.18 -0.82 -0.06 99.72 -0.28
REG 0.27 106.44 6.44 -0.08 105.00 5.00 -0.04 106.45 6.45
CP 0.26 106.56 6.56 -0.08 105.04 5.04 -0.04 106.55 6.55
MAP 0.26 106.58 6.58 -0.08 105.02 5.02 -0.03 106.49 6.49
PP 0.12 107.03 7.03 -0.20 105.43 5.43 -0.14 106.85 6.85
LGREG 0.27 106.44 6.44 -0.07 104.98 4.98 -0.03 106.39 6.39

n=800 n=900 n=1000

HT -0.27 100.00 0.00 -0.03 100.00 0.00 0.02 100.00 0.00
CAL -0.27 99.48 -0.52 -0.03 99.63 -0.37 0.03 99.63 -0.37
REG -0.28 106.05 6.05 -0.07 106.05 6.05 0.05 105.28 5.28
CP -0.28 106.14 6.14 -0.08 106.11 6.11 0.04 105.37 5.37
MAP -0.28 106.09 6.09 -0.08 106.06 6.06 0.05 105.34 5.34
PP -0.37 106.40 6.40 -0.16 106.35 6.35 -0.03 105.64 5.64
LGREG -0.28 106.01 6.01 -0.07 106.00 6.00 0.05 105.24 5.24

Table 4: Estimated proportion (P̂), lower bound (LB), upper bound (UB) and
length (LEN) of a 95% confidence interval for alternative estimators in the
Immigration Survey.

P̂ LB UB LEN
HT 5.088 4.086 6.090 2.004
CAL 5.175 4.147 6.204 2.057
REG 4.353 3.414 5.293 1.878
CP 4.353 3.448 5.257 1.809
MAP 4.364 3.424 5.303 1.878
PP 4.539 3.668 5.409 1.742
LGREG 4.363 3.365 5.362 1.997
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