Mostrar el registro sencillo del ítem

dc.contributor.authorRamírez Rodríguez, Gloria Belén 
dc.contributor.authorDelgado López, José Manuel 
dc.date.accessioned2021-03-08T13:31:27Z
dc.date.available2021-03-08T13:31:27Z
dc.date.issued2021
dc.identifier.citationRamírez-Rodríguez, G.B.; Pereira, A.R.; Herrmann, M.; Hansmann, J.; Delgado-López, J.M.; Sprio, S.; Tampieri, A.; Sandri, M. Biomimetic Mineralization Promotes Viability and Differentiation of Human Mesenchymal Stem Cells in a Perfusion Bioreactor. Int. J. Mol. Sci. 2021, 22, 1447. https://doi.org/ 10.3390/ijms22031447es_ES
dc.identifier.urihttp://hdl.handle.net/10481/66989
dc.description.abstractIn bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.es_ES
dc.description.sponsorshipEU Marie Curie Project "Bio-Inspired Bone Regeneration" 607051es_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities (MCIU) RYC-2016-21042 RTI-2018-095794A-C22es_ES
dc.description.sponsorshipInterdisciplinary Center for Clinical Research (IZKF) at the University ofWuerzburg D-361es_ES
dc.description.sponsorshipMCIUes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectScaffoldes_ES
dc.subjectPerfusion bioreactores_ES
dc.subjectCollagen es_ES
dc.subjectApatite nanoparticleses_ES
dc.subjectMagnesium es_ES
dc.subjectHuman Mesenchymal Stem Cellses_ES
dc.subjectOsteogénesises_ES
dc.titleBiomimetic Mineralization Promotes Viability and Differentiation of Human Mesenchymal Stem Cells in a Perfusion Bioreactores_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/ijms22031447


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España