Show simple item record

dc.contributor.authorIonescu, Ana María Andreea
dc.contributor.authorChato Astrain, Jesús 
dc.contributor.authorCardona Pérez, Juan De La Cruz 
dc.contributor.authorCampos, Fernando
dc.contributor.authorPérez, María M.
dc.contributor.authorAlaminos Mingorance, Miguel 
dc.contributor.authorGarzón Bello, Ingrid Johanna 
dc.date.accessioned2020-12-22T12:09:46Z
dc.date.available2020-12-22T12:09:46Z
dc.date.issued2020-05-07
dc.identifier.citationIonescu, A. M., Chato-Astrain, J., Pérez, J. D. L. C. C., Campos, F., Gómez, M. M. P., Alaminos, M., & Bello, I. G. (2020). Evaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterials. Journal of Biomedical Optics, 25(5), 055002. [DOI: 10.1117/1.JBO.25.5.055002]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/65106
dc.description.abstractSignificance: Recent generation of bioengineered human skin allowed the efficient treatment of patients with severe skin defects. However, the optical and biomechanical properties of these models are not known. Aim: Three models of bioengineered human skin based on fibrin-agarose biomaterials (acellular, dermal skin substitutes, and complete dermoepidermal skin substitutes) were generated and analyzed. Approach: Optical and biomechanical properties of these artificial human skin substitutes were investigated using the inverse adding-doubling method and tensile tests, respectively. Results: The analysis of the optical properties revealed that the model that most resembled the optical behavior of the native human skin in terms of absorption and scattering properties was the dermoepidermal human skin substitutes after 7 to 14 days in culture. The time-course evaluation of the biomechanical parameters showed that the dermoepidermal substitutes displayed significant higher values than acellular and dermal skin substitutes for all parameters analyzed and did not differ from the control skin for traction deformation, stress, and strain at fracture break. Conclusions: We demonstrate the crucial role of the cells from a physical point of view, confirming that a bioengineered dermoepidermal human skin substitute based on fibrin-agarose biomaterials is able to fulfill the minimal requirements for skin transplants for future clinical use at early stages of in vitro development.es_ES
dc.description.sponsorshipMinistry of Science, Innovation and Universities of Spain PGC2018-101904-A-I0es_ES
dc.description.sponsorshipInstituto de Salud Carlos III (ISCIII), Ministry of Science, Innovation and Universities, through AES 2017 AC17/00013es_ES
dc.description.sponsorshipInstituto de Salud Carlos III (ISCIII), Ministry of Science, Innovation and Universities within EuroNanoMed framework, EU AC17/00013es_ES
dc.description.sponsorshipUniversity of Granada A.TEP.280.UGR18es_ES
dc.description.sponsorshipJunta de Andalucía PE-0395-2019es_ES
dc.description.sponsorshipFundación Benéfica Anticancer San Francisco Javier y Santa Cándida, Granada, Spaines_ES
dc.description.sponsorshipOTRI.35A-07es_ES
dc.language.isoenges_ES
dc.publisherSpie-Soc Photo Optical Instrumentation Engineerses_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectOptical properties es_ES
dc.subjectAbsorptiones_ES
dc.subjectScatteringes_ES
dc.subjectBioengineered skines_ES
dc.subjectFibrin-agarose biomateriales_ES
dc.titleEvaluation of the optical and biomechanical properties of bioengineered human skin generated with fibrin-agarose biomaterialses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1117/1.JBO.25.5.055002
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España