Mostrar el registro sencillo del ítem
Cómo mejorar la comunicación de estadísticos inferenciales en ciencias de la salud
dc.contributor.author | Ruiz Ruano García, Ana María | |
dc.contributor.author | López Puga, Jorge | |
dc.date.accessioned | 2020-11-06T10:31:07Z | |
dc.date.available | 2020-11-06T10:31:07Z | |
dc.date.issued | 2020-06 | |
dc.identifier.citation | Ruiz-Ruano García, A. M., & Puga, J. L. (2020). Cómo mejorar la comunicación de estadísticos inferenciales en ciencias de la salud. Revista Española de Comunicación En Salud, 11(1). [https://doi.org/10.20318/recs.2020.5173] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/64095 | |
dc.description.abstract | Las técnicas de inferencia estadística son esenciales para las ciencias de la salud. Gracias a estas herramientas estadísticas se pueden identificar, por ejemplo, factores de riesgo que afectan negativamente al estado de salud de las personas. Sin embargo, el proceso de comunicación científica y la relevancia de los hallazgos científicos pueden distorsionarse por el mal uso de estadísticos inferenciales como el p-valor o el factor de Bayes. En este trabajo proporcionamos siete directrices básicas que pretenden ayudar a interpretar y usar conjuntamente el pvalor clásico de un contraste de hipótesis en conjunción con los factores de Bayes. Aunque el factor de Bayes es menos conocido, y de introducción más reciente, que el p-valor es susceptible de ser utilizado superficial o erróneamente. Una comunicación más eficiente de los resultados de la investigación científica favorecería una mejor comprensión de estos y redundaría en mayores cotas de salud pública. Esperamos que estas directrices puedan ser de utilidad para personas de ciencia con poca experiencia, frente a la toma de decisiones políticas relacionadas con hallazgos científicos, en procesos editoriales y para el público en general | es_ES |
dc.description.abstract | Statistic techniques for inference are essential for health sciences. Those techniques are useful to identify, for example, risk factors. However, the scientific communication process can be biased when inferential statistics are wrongly used. Here we provide seven guidelines to help readers to use the p-value and Bayes factor, two inferential statistics. Although the Bayes factor is less known than the p-value it is also prone to be misinterpreted and misused. A better scientific communication of research output would lead to a better understanding of scientific discoveries. As a result, this improvement in the information process would affect positively public health. We hope our guidelines to be helpful for researchers, reviewers, editors, policy decision makers and the general public | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Carlos III Madrid | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Comunicación en salud | es_ES |
dc.subject | Diseminación de la información | es_ES |
dc.subject | Ciencias de la información | es_ES |
dc.subject | Directrices | es_ES |
dc.subject | Modelos estadísticos | es_ES |
dc.subject | Probabilidad | es_ES |
dc.subject | Incertidumbre | es_ES |
dc.subject | Teorema de Bayes | es_ES |
dc.subject | Health communication | es_ES |
dc.subject | Information dissemination | es_ES |
dc.subject | Information sciences | es_ES |
dc.subject | Guidelines | es_ES |
dc.subject | Statistical model | es_ES |
dc.subject | Probability | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Bayes theorem | es_ES |
dc.title | Cómo mejorar la comunicación de estadísticos inferenciales en ciencias de la salud | es_ES |
dc.title.alternative | How to improve inferential statistics reporting in health sciences | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.20318/recs.2020.5173 | |
dc.type.hasVersion | VoR | es_ES |