Afficher la notice abrégée

dc.contributor.authorBecerra Guerrero, Julio Antonio 
dc.contributor.authorBerrondo, Manuel
dc.date.accessioned2020-10-22T12:22:02Z
dc.date.available2020-10-22T12:22:02Z
dc.date.issued2020-08-19
dc.identifier.citationJ. Math. Phys. 61, 082107 (2020); [doi: 10.1063/1.5143586]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/63866
dc.descriptionJ.G. thanks the Spanish Ministerio de Ciencia, Innovacion y Universidades for financial support (Grant Nos. FIS2017-84440-C2-2-P and PGC2018-097831-B-I00). M.B. acknowledges the hospitality of the University of Jaen and the Institute Carlos I of Theoretical and Computational Physics (University of Granada).es_ES
dc.description.abstractWe present an interpretation of the functions appearing in the Wei–Norman factorization of the evolution operator for a Hamiltonian belonging to the SU(1,1) algebra in terms of the classical solutions of the Generalized Caldirola–Kanai (GCK) oscillator (with time-dependent mass and frequency). Choosing P2, X2, and the dilation operator as a basis for the Lie algebra, we obtain that, out of the six possible orderings for the Wei–Norman factorization of the evolution operator for the GCK Hamiltonian, three of them can be expressed in terms of its classical solutions and the other three involve the classical solutions associated with a mirror Hamiltonian obtained by inverting the mass. In addition, we generalize the Wei–Norman procedure to compute the factorization of other operators, such as a generalized Fresnel transform and the Arnold transform (and its generalizations), obtaining also in these cases a semiclassical interpretation for the functions in the exponents of the Wei–Norman factorization. The singularities of the functions appearing in the Wei–Norman factorization are related to the caustic points of Morse theory, and the expression of the evolution operator at the caustics is obtained using a limiting procedure, where the Fourier transform of the initial state appears along with the Guoy phase.es_ES
dc.description.sponsorshipSpanish Ministerio de Ciencia, Innovacion y Universidades FIS2017-84440-C2-2-P PGC2018-097831-B-I00es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleSemiclassical interpretation of Wei–Norman factorization for SU(1,1) and its related integral transformses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doi10.1063/1.5143586
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-SinDerivadas 3.0 España
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-SinDerivadas 3.0 España