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ABSTRACT
We present an interpretation of the functions appearing in the Wei–Norman factorization of the evolution operator for a Hamiltonian belong-
ing to the SU(1,1) algebra in terms of the classical solutions of the Generalized Caldirola–Kanai (GCK) oscillator (with time-dependent mass
and frequency). Choosing P2, X2, and the dilation operator as a basis for the Lie algebra, we obtain that, out of the six possible orderings for
the Wei–Norman factorization of the evolution operator for the GCK Hamiltonian, three of them can be expressed in terms of its classical
solutions and the other three involve the classical solutions associated with a mirror Hamiltonian obtained by inverting the mass. In addition,
we generalize the Wei–Norman procedure to compute the factorization of other operators, such as a generalized Fresnel transform and the
Arnold transform (and its generalizations), obtaining also in these cases a semiclassical interpretation for the functions in the exponents of the
Wei–Norman factorization. The singularities of the functions appearing in the Wei–Norman factorization are related to the caustic points of
Morse theory, and the expression of the evolution operator at the caustics is obtained using a limiting procedure, where the Fourier transform
of the initial state appears along with the Guoy phase.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143586

I. INTRODUCTION
The Wei–Norman (WN) factorization method1,2 allows us to express the evolution operator (or propagator) for a system of first-order

linear differential (operator) equations y′(t) = A(t)y(t) as a product of a finite number of exponentials, in the case in which A(t) is an element
of a finite-dimensional Lie algebra. It has multiple applications, one of the most important being the factorization of the evolution operator
associated with Schrödinger’s equation, where A(t) is proportional to the quantum Hamiltonian.

WN factorization leads to a set of nonlinear differential equations for the functions [here usually denoted by gi(t)] appearing in the
exponential operators. In many situations, these equations are of Riccati type, which admit a transformation, under suitable changes in the
dependent variable, into second-order linear differential equations.

One of the most valuable examples in quantum mechanics are those of quadratic Hamiltonians in position Q and momentum P, which
expand the su(1, 1) Lie algebra. The time-dependent case, whose more general expression is known as the Generalized Caldirola–Kanai (GCK)
Hamiltonian,3–5 has important applications in as diverse fields as ion trap physics,6 photonics lattices,7 and cosmology.8 Thus, a method for
finding the solution in this general case is crucial. The WN factorization method applies in this case, and we show in this paper that, for a
basis of the quadratic Lie algebra given by P2, Q2, and QP, the second-order linear differential equation obtained from the Riccati equation
is the Euler–Lagrange (EL) equation associated with the classical version of the GCK Hamiltonian in three of the possible orderings of the
exponentials. For the other three orderings, the second-order linear differential equation is the Euler–Lagrange (EL) equation associated with
a classical Hamiltonian that is a mirror version of the original GCK Hamiltonian, where the mass is inverted. This provides a geometric and
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semiclassical interpretation of the WN factorization for the SU(1, 1) case, since all the information provided by the evolution operator is
obtained from the solutions of the EL equation. Similar results can be found in the literature9,10 (see also Refs. 11 and 12), but in those papers,
just one ordering has been considered. This study could also be generalized to other Lie groups such as SU(2), which will be considered
elsewhere.

For the GCK case, the evolution operator can be considered as a linear integral transform13 (see also Appendix B). Associated with the
evolution operator, there are other linear integral transforms that relate different GCK systems. These are the Fresnel transform14 and the
Arnold transform,5 along with their generalizations. The difference between the latter two is that the Arnold transform is, up to a local phase,
a point (or geometric) transformation, i.e., the integral transform reduces to a local operator. The price to be paid for this simplification is an
extra diffeomorphism in time in such a way that the evolution times are different in the two systems. Point transformations are preferable to
non-trivial integral transforms since they preserve point (or geometric) symmetries of the system that in the case of the GCK oscillator are
given by the Schrödinger group.5 We provide in this paper a modification of the WN method that allows us to obtain also a factorization of
these integral transforms. These expressions seem to be new in the literature.

One of the problems of the WN factorization method is its local character in time, in the sense that the functions gi(t) appearing in the
exponentials diverge for specific finite values of t. This problem is analyzed for the SU(1, 1) case, and it is related to the fact that not all elements
of the group can be written in a factorized way (i.e., the factorization is not onto). This problem is not specific of the WN method but appears
also in other approaches such as Feynman’s path integral method for computing the propagator.15,16 The singular values of the functions gi(t)
are related to the caustics appearing in the path integral method and are also related to the caustics appearing in Morse theory.17 They are also
related to the focal points appearing in Fourier optics.18

The computation of the propagator at the caustics in the path integral approach involves the use of higher order perturbations. In our
case, we use a fine-tuning analysis of the limit at the caustic points to derive its expression.

In addition, the phase jumps of the propagator in the path integral method15,16 appearing when passing through a caustic, which are
ultimately related to the Maslov index and the Maslov correction, and with the Guoy phase in optics,19 are also easily obtained in the WN
method. In summary, the existence of singularities in the functions gi(t) can be easily handled within the WN method and does not prevent
the computation of the evolution operator for all times.

The problem of the singularities of gi(t) and the phase jumps of the wave function when crossing a singularity seems not to be present
in other works such as Refs. 9 and 10. The reason is that in those papers, the evolution operator is applied to a particular initial state (number
state or coherent state of the standard harmonic oscillator), obtaining explicit expressions for the evolved wave function (this is made possible
by the factorized form of the evolution operator provided by the WN method) that do not depend explicitly on gi(t) but directly on the
solutions of the EL equation, which do not possess singularities. However, the phase jumps appearing in our approach when crossing a caustic
can still be found in their solutions, in a form of an arctan function of the quotient of the two classical solutions, which experiences a jump
of π when the denominator is zero (i.e., at caustic points). In a sense, our approach, focusing on the evolution operator, is more general than
that of Refs. 9 and 10 where very particular initial states are considered. However, we have to tackle the problem of the singularities (inherent
to the WN factorization), and this is hidden in Refs. 9 and 10 due to the nice properties of the initial states considered.

The content of this paper is as follows: In Sec. II, the WN factorization is reviewed and particularized to the Schrödinger case in Sec. II A.
In Sec. III, the case of the GCK oscillator is considered and the evolution operator is factorized using two representative orderings. The
functions gi(t) are related to solutions of the EL equations associated with the original classical Hamiltonian and a mirror version of it. In
Sec. IV, the Fresnel transform is discussed and generalized, providing a way to compute a factorization by modification of a WN method.
In Sec. V, the Arnold transform and its generalizations are reviewed, providing also a factorization by a modified WN (MWN) method. In
Sec. VI, some particular versions of the Fresnel transform are recovered for particular cases of the MWN method. In Sec. VIII, the particular
case of the CK oscillator, for constant frequency and damping coefficient, is discussed in detail. In particular, the problem of the caustic
points [where the functions gi(t) diverge] is discussed, and the computation of the evolution operator together with the phase jumps at these
points is provided within the WN method. Finally, after the Conclusion, a couple of appendices are provided: Appendix A, which discusses
the groupoid property of the evolution operator in the framework of the WN method, and Appendix B, containing a review of the most
important and useful results about linear integral transforms.

II. THE WEI–NORMAN FACTORIZATION METHOD
Consider the first-order linear initial value problem (IVP), where the prime indicates derivative with respect to t,

y′(t) = A(t)y(t), y(t0) = y0, (1)

with y(t), y0 ∈ V and y0 being the initial condition at t0. Here, V is a vector space (which can be infinite-dimensional) and A(t) is a family of
endomorphism of V (i.e., a family of matrices or linear operators).

By Picard’s existence and uniqueness theorem20 (particularized to systems of homogeneous linear equations), if A(t) is continuous and
∥A(t)∥ is bounded on some interval I ⊂ R containing t0, then the IVP (1) has a unique solution on I.

In most examples in physics, A(t) is (up to a factor) the Hamiltonian in a classical or quantum mechanical system, and Eq. (1) corresponds
to Hamilton’s or Schrödinger’s equation, respectively. The case of the Schrödinger equation will be treated in Sec. II A.

It is convenient to write the solution y(t) as
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y(t) = U(t, t0)y(t0) ∀t ∈ I, (2)

where U(t, t0) is known as the matrizant,21 evolution operator, propagator, transfer matrix, etc., depending on the context.
Using the evolution operator, Eq. (1) is transformed into

∂U(t, t0)
∂t

= A(t)U(t, t0), U(t0, t0) = IV , (3)

with IV being the identity automorphism of V . For V finite-dimensional, it is easily checked that U(t, t0) is an automorphism of V for all
t, t0 ∈ I, since we have that (see, for instance, Ref. 22)

det U(t, t0) = det U(t0, t0) exp(∫
t

t0

tr(A(s))ds) = exp(∫
t

t0

tr(A(s))ds) (4)

since detU(t0, t0) = 1 and A(t) is bounded on I. The infinite-dimensional case will be discussed in Sec. II A.
The family of evolution operators verifies the groupoid property,

U(t2, t1)U(t1, t0) = U(t2, t0),

U(t1, t0) = U(t0, t1)−1 (5)

∀t0, t1, t2 ∈ I. See Appendix A for a discussion of the groupoid property in the context of the Wei–Norman factorization.
Only in the time-independent case A(t) = A,∀t ∈ I, we find that U(t, t0) = U(t − t0) and U(t) defines a 1-parameter group,

U(t1 + t2) = U(t1)U(t2), (6)

with A as the infinitesimal generator.
Equation (3) is more general than Eq. (1) and has the advantage that the initial condition, U(t0, t0) = IV , is fixed. For simplicity of

notation, we shall simply write U(t) ≡ U(t, t0) and take t0 = 0 in most of the cases, but we should keep in mind the dependence of U(t) on the
initial time t0.

In what follows, we shall assume that A(t) can be written as a finite sum,

A(t) =
n

∑
i=1
αi(t)Xi ∀t ∈ I, (7)

where B = {Xi, i = 1, . . . , n = dimG} forms a basis of a Lie algebra G, realized as endomorphisms of V , with commutation relations given by

[Xi, Xj] =
n

∑
k=1

CijkXk (8)

and Cijk are known as the structure constants of the Lie algebra G and the basis B.
Then, the WN theorem1,2 states that the evolution operator U(t) can be factorized as

U(t) = eg1(t)X1 eg2(t)X2 ⋅ ⋅ ⋅ egn(t)Xn , gi(0) = 0, i = 1, . . . , n, (9)

where the functions gi(t), i = 1, . . . , n satisfy a set of non-linear first-order differential equations. This construction holds, in general, only in
an open subinterval J ⊂ I centered at t0 = 0 (local theorem). There are some important cases where the factorization is valid for all t ∈ I
(global theorem), namely, for both solvable algebras and the case of 2 × 2 real matrices.2

A. Wei–Norman factorization applied to Schrödinger’s equation
The quantum evolution equation analogous to Eq. (1) is given by the Schrödinger equation [note the presence of the imaginary unit here

as compared to Eq. (1)],

i
∂

∂t
∣Ψ(t)⟩ = H(t)∣Ψ(t)⟩, ∣Ψ(t0)⟩ = ∣Ψ0⟩, (10)
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where we have used Diracs’s ket notation, i.e., ∣Ψ(t)⟩, ∣Ψ0⟩ ∈ DH ⊂ H, and H is a (infinite-dimensional, in general) Hilbert space.
Here, H(t) is a family of essentially self-adjoint operators acting on a common dense domain DH ⊂ H. Under mild conditions for H(t), the
Schrödinger equation has a unique solution ∣Ψ(t)⟩ for any ∣Ψ0⟩ ∈ H valid for all t ∈ R. Introducing the evolution operator U as

∣Ψ(t)⟩ = U(t, t0)∣Ψ0⟩ ∀t ∈ R, (11)

this differential equation can be transformed into [note again the presence of the imaginary unit as compared to Eq. (3)]

i
∂U(t, t0)

∂t
= H(t)U(t, t0), U(t0, t0) = IH. (12)

In this infinite-dimensional case, a generalization of Eq. (4) also applies, and using the fact that H(t) is essentially self-adjoint (and the
presence of the imaginary unit), we conclude that U(t, t0) is a family of unitary operators, satisfying the groupoid property (5). Only in the
case H(t) = H0,∀t ∈ R, this family constitutes a 1-parameter group with infinitesimal generator H0. As earlier, we shall simply write U(t) for
U(t, t0), but we should keep in mind the dependence on t0 if the Hamiltonian is time-dependent.

Assuming that the Hamiltonian H(t) can be written as

H(t) =
n

∑
i=1
αi(t)Xi ∀t ∈ R, (13)

where, now, Xi, i = 1, . . . , n, are essentially self-adjoint operators having the same common dense domain DH ⊂ H, and closing the Lie algebra
G [with commutation relations (8)], the WN factorization (9) of the evolution operator U(t) can also be performed. The factorization will be
valid in an interval J ⊂ R. The same considerations about the local or global character of the factorization also apply here since this depends
(except for some particular cases such as that of 2 × 2 real matrices) on the structure constants of the Lie algebra G and not on the particular
representation (either as matrices or operators) of the Xi.

III. EVOLUTION OPERATOR FOR GCK
We shall now consider the specific case of the generalized Caldirola–Kanai (GCK)3,4 quantum Hamiltonian,

H(t) =
1

2m(t)
P2 +

1
2

m(t)ω2(t)X2, (14)

where X ≡ x and P ≡ −i ∂
∂x are the usual dimensionless position and momentum operators in one dimension. Both the mass m(t) and the

frequency ω(t) are taken to depend on time. This Hamiltonian appears in many physical situations, generalizing the standard harmonic
oscillator [ω(t) = ω0, m(t) = m0] and the time-dependent (parametric) harmonic oscillator [m(t) = m0] appearing, for instance, in ion traps.6
The general case appears, for instance, in some cosmological models.8

Given that the Hamiltonian is time-dependent, the corresponding time evolution operator U(t) does not take the simple textbook expo-
nential form. Instead, we shall follow the WN factorization approach for its computation, and for that purpose, we first proceed to find the
Lie algebra associated with our Hamiltonian.

The three operators

K =
1
2
∂2

∂x2 = −
P2

2
, (15)

V =
X2

2
, (16)

and
S =

i
2

D, (17)

with D = 1
2 (XP + PX) as the dilation operator, form a basis of an su(1, 1) algebra. Note that K, V , and D are Hermitian operators, and thus, S

is anti-Hermitian. The Hamiltonian in Eq. (14) is obviously an element of this algebra,

H(t) = −
K

m(t)
+ m(t)ω2(t)V , (18)

where the dilation element S is not present. However, due to the commutation relations of the Lie algebra su(1, 1), S will appear in the
Wei–Norman factorization. We could have considered the most general element of the Lie algebra, including a term in S as well as in the
Hamiltonian (see Refs. 9 and 10 for a detailed study of this case in the WN approach). However, the dilation element S of the Lie algebra is
not realizable in most physical applications, and in any case, it can be easily removed by a gauge transformation.23
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The corresponding commutation relations defining the su(1, 1) Lie algebra are

[K, V] = 2S, [K, S] = K, [V , S] = −V . (19)

Invoking now the Wei–Norman ansatz (see Refs. 1 and 2 and Sec. II), we can express the time evolution operator U(t) as a product of three
exponential operators,

U(t) = eg1(t)M1 eg2(t)M2 eg3(t)M3 , (20)

where BM ≡ {M1, M2, M3} is a given permutation of the basis {K, V , S}. For convenience, we have labeled the indices of the g functions
according to the ordering of the exponentials.

Each exponent in egi(t)Mi , i = 1, 2, 3 consists of a product of an unknown time-dependent function gi(t) and the corresponding basis
operator Mi. Since these operators do not commute, the explicit form of the functions g depends on the chosen permutation BM [although
the expression of U(t) does not depend on it]. The advantage with this factorized form (as opposed to the exponential of a sum) is that the
application of each exponential factor egi(t)Mi to a ket is straightforward, even for time-dependent functions gi(t).

Note that each exponential operator egi(t)Mi corresponds to a one-parameter transform subgroup given in Eq. (B11) of Appendix B
(see also Ref. 13). This realization constitutes a twofold representation (the metaplectic representation) of the symplectic group of canonical
transformations.

A. Ordering B1

For the particular ordered basis B1 = {V , S, K}, the expression of U(t) is chosen as

U(t) = eg1(t)V eg2(t)Seg3(t)K , U(t = 0) = I. (21)

Applying the general description of the WN factorization method explained in Sec. II, we derive the three coupled differential equations
satisfied by the functions gi(t),

−ig′1(t) =
W(t)
m0

g1(t)2
−

m0ω2(t)
W(t)

, g1(0) = 0,

−ig′2(t) =
2W(t)

m0
g1(t), g2(0) = 0,

−ig′3(t) =
W(t)
m0

eg2(t), g3(0) = 0,

(22)

where W(t) = m0
m(t) , with m0 = m(0). It should be stressed that, from these equations, g1(t) and g3(t) are pure imaginary, while g2(t) is real.

These, together with the hermiticity of the operators K, V , and D, guarantees that the evolution operator U(t) is unitary. This turns out to be
the same condition for the rest of this paper and will not be further discussed.

The first equation is an uncoupled Riccati equation for g1(t), and once solved, the second and then the third equations are solved
by quadratures. In Sec. VIII, we provide the explicit solutions of these equations for the usual Caldirola–Kanai case3,4 m(t) = m0e2γt and
ω(t) = ω0.

For general time-dependent functions m(t) and ω(t), we shall instead transform the Riccati equation into a second-order linear
differential equation to gain some physical insight. With the standard change of functions,24

g1(t) = i
m0u′2(t)

W(t)u2(t)
, (23)

the equation for u2(t) results in

u″
2 (t) −

W′(t)
W(t)

u′2(t) + ω(t)2u2(t) = 0, u2(0) = 1, u′2(0) = 0. (24)

This is the Euler–Lagrange equation associated with the classical Hamiltonian corresponding to Eq. (14). It is the most general equation
for an oscillator with time-dependent frequency and mass (or damping coefficient). See Ref. 5 for the driven case and also Ref. 9 in the
framework of the WN approach.

In terms of the function u2(t), g2(t) can be solved as

g2(t) = − log u2(t)2. (25)
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Thus, the factors eg1(t)V eg2(t)S appearing in the operator U(t) represent a dilation by 1
u2(t) followed by a multiplication by the phase

exp(i m0u′2(t)
2W(t)u2(t) x2).
Once we know g2(t), g3(t) is expressed as

g3(t) =
i

m0
∫

t

0

W(t′)
u2(t′)2 dt′ =

i
m0

u1(t)
u2(t)

, (26)

where

u1(t) = u2(t)∫
t

0

W(t′)
u2(t′)2 dt′, u1(0) = 0, u′1(0) = 1, (27)

is a new, independent solution of Eq. (24). In terms of the solutions u1 and u2, we have W(t) = u′1(t)u2(t) − u1(t)u′2(t). Thus, W(t) turns out
to be the Wronskian of the two fundamental solutions of Eq. (24).

The factor eg3(t)K appearing in the operator U(t) represents an integral transform known as the Fresnel propagator (or Fresnel transform)
[see Appendix B, the first line in Eq. (B11)].

The Fresnel propagator is a non-point (or non-geometric) transform, i.e., it is not obtained, up to a phase, as a change of variables in the
argument of the function (see Appendix B). In optics, it accounts for the propagation of waves in free space, and in quantum mechanics, it is
responsible for the time evolution of a free non-relativistic particle.

B. Ordering B2

If we choose a different ordering, for instance, B2 = {K, S, V}, the evolution operator is factorized as

U(t) = eh1(t)K eh2(t)Seh3(t)V . (28)

Applying again the WN factorization method, the coupled differential equations satisfied by the functions hi(t) are

−ih′1(t) = −
m0ω2(t)

W(t)
h1(t)2 +

W(t)
m0

, h1(0) = 0,

−ih′2(t) =
2m0ω2(t)

W(t)
h1(t), h2(0) = 0,

−ih′3(t) = −
m0ω2(t)

W(t)
e−h2(t), h3(0) = 0.

(29)

Using again the change of functions

h1(t) = −i
W(t)v′2(t)

m0ω2(t)v2(t)
, (30)

the equation for v2(t) takes the related form

v″2 (t) + (
W′(t)
W(t)

− 2
ω′(t)
ω(t)
)v′2(t) + ω2(t)v2(t) = 0, v2(0) = 1, v′2(0) = 0. (31)

The friction coefficient in this equation, W′(t)
W(t) − 2ω′(t)

ω(t) , can be interpreted as corresponding to a time-dependent mass m̃(t) = m2
0ω

2
0

m(t)ω(t)2 ,
where ω0 = ω(0) has been introduced for convenience. Hence, Eq. (31) is the Euler–Lagrange equation associated with the new classical
Hamiltonian

H̃(t) =
1

2m̃(t)
p2 +

1
2

m̃(t)ω2(t)x2. (32)

Note that H̃(t) is H(t) with the functions multiplying K and V interchanged. In the particular case of constant frequency ω(t) = ω0, the new
friction coefficient has the opposite sign. Therefore, Eq. (31) corresponds to the Euler–Lagrange equation for a mirror particle in the sense of
the Bateman dual system.25

In terms of the function v2(t), h2(t) can be solved as

h2(t) = log v2(t)2, (33)

analogous to Eq. (25), but with the opposite sign.
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In this case, the factors eh2(t)Seh3(t)V appearing in the operator U(t) represent multiplication by the phase exp(−i W(t)v′2(t)
m0ω2(t)v2(t) x2) followed by

a dilation by v2(t).
Once we know h2(t), h3(t) is expressed as

h3(t) = −im0∫

t

0

ω2(t′)
W(t′)v2(t′)2 dt′ = −im0ω2

0
v1(t)
v2(t)

, (34)

where

v1(t) =
v2(t)
ω2

0
∫

t

0

ω(t′)2

W(t′)v2(t′)2 dt′, v1(0) = 0, v′1(0) = 1, (35)

is a new solution of Eq. (31). In terms of the solutions v1 and v2, we have that v′1(t)v2(t) − v1(t)v′2(t) = ω(t)2

W(t) is the new Wronskian of the two
fundamental solutions of Eq. (31).

Out of the other four remaining ordered basis, two of them lead to similar results to the basis B1 with the same Euler–Lagrange equa-
tion (24), while the other two are similar to B2 with the same Euler–Lagrange equation (31) and will not be further discussed here [see Ref. 26
for a detailed study of the Wei–Norman method for the group SL(2,R), where the same basis is considered and the six orderings are discussed
for the purpose of obtaining non-linear superposition principles].

IV. GENERAL FRESNEL TRANSFORM
In this section, we consider the possibility of relating a GCK system, with frequency ω(t) and mass m(t) to the free particle. That is, we

are interested in a unitary transformation F(t), called the General Fresnel transform (GFT), from the Hilbert space Ht of solutions to the
Schrödinger equation for the GCK system (14) to the corresponding Hilbert space H0

t for the free particle

H0 = −
1

m0
K, (36)

where m0 = m(0) as in Sec. III. We take the nomenclature from Ref. 14, where they denote a general linear integral transform (see Appendix B)
with the integral kernel given by (B5) by a general Fresnel transform since it contains the Fresnel propagator as a particular case.

Denoting by U(t) and U0(t) the evolution operators for the GCK system and the free particle, respectively, the following diagram is
commutative and all operators appearing in it are unitary:

where G(t) = F(t)−1. From the diagram, it can be immediately seen that G(t) = U(t)U0(t)−1.
The corresponding differential equation for G(t) is

i
∂G(t)
∂t

G(t)−1
= H(t) −G(t)H0G(t)−1, G(0) = I, (37)

generalizing the Schrödinger equation for the evolution operator [Eq. (12)].
This equation can also be solved by using the WN factorization technique since both H(t) and H0 belong to the same su(1, 1) algebra.
Using the same basis as in Sec. III, for the specific ordering B1, the expression of G(t) is chosen as

G(t) = e f 1(t)V e f 2(t)Se f 3(t)K , (38)

where the functions f i(t), i = 1, 2, 3 verify the new non-linear equations

−i f ′1(t) =
W(t)
m0

f 1(t)2
−

m0ω2(t)
W(t)

,

−i f ′2(t) =
2W(t)

m0
f 1(t),

−i f ′3(t) =
W(t)
m0

e f 2(t)
−

1
m0

.

(39)
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The equation for f 3 has an extra term − 1
m0

as compared to Eq. (22), reflecting the fact that we are now solving for the general Fresnel
transform [Eq. (37)], instead of the evolution operator U(t) [Eq. (12)]. As in the case of the evolution operator, we shall transform the present
Riccati equation into a second-order linear differential equation to gain some physical insight. With the standard change of functions,24

f 1(t) = i
m0u′2(t)

W(t)u2(t)
, (40)

the equation for u2(t) is

u″
2 (t) −

W′(t)
W(t)

u′2(t) + ω(t)2u2(t) = 0, u2(0) = 1, u′2(0) = 0, (41)

equivalent to Eq. (24).
As above, this is the Euler–Lagrange equation associated with the classical Hamiltonian corresponding to Eq. (14). In terms of the

function u2(t), g2(t) can be solved as

f 2(t) = − log u2(t)2. (42)

Once we know f 2(t), f 3(t) is expressed as

f 3(t) =
i

m0
∫

t

0
(

W(t′)
u2(t′)2 − 1) dt′ =

i
m0

(
u1(t)
u2(t)

− t), (43)

where

u1(t) = u2(t)∫
t

0

W(t′)
u2(t′)2 dt′, u1(0) = 0, u′1(0) = 1, (44)

is a new solution of Eq. (41). In terms of the solutions u1 and u2, we have W(t) = u′1(t)u2(t) − u1(t)u′2(t), the Wronskian of the two fundamental
solutions of Eq. (41).

Note the presence of the term −i t
m0

in Eq. (43), as compared to Eq. (26), whose origin is the abovementioned extra term appearing in the
equation for g3 in Eq. (39).

In addition, the general Fresnel transform can be factorized in a different basis and/or ordering. In particular, it can be factorized in the
ordering given by B2, with results similar to those of Sec. III B.

The unitary transformation G(t) maps the free particle into an arbitrary GCK system. Using the explicit form of these solutions, we
confirm that G(t) = U(t)U0(t)−1 for this particular case.

The general Fresnel transform can be further generalized to a transformation relating an arbitrary GCK system to the harmonic oscillator
or even relating two arbitrary GCK systems. However, in any case, the general Fresnel transform will be a non-point transformation (see
Appendix B) since it will always include an exponential factor e f 3(t)K (the Fresnel propagator), which is a non-trivial integral operator in this
representation.

It is desirable to build a transform whose factorization does not involve the Fresnel propagator, being therefore a point transformation.
This will be considered in Sec. V.

V. ARNOLD TRANSFORM
In this section, we consider the possibility of relating two different GCK systems, namely, system 1 with frequency ω1(t) and mass m1(t)

and system 2 with frequency ω2(t) and mass m2(t), through a point transformation, with the pay-off of an additional diffeomorphism in time.
That is, we are interested in a transformation A(t) [and its inverse B(t) ≡ A(t)−1] from system 1 to system 2 such that the following diagram is
commutative and all operators appearing in it are unitary:

In this diagram, H(1)
t1

is the Hilbert space of solutions to the Schrödinger equation for system 1 at time t1 and H(2)
t2

is the Hilbert space
of solutions to the Schrödinger equation for system 2 at time t2. U1(t1) and U2(t2) are the corresponding evolution operators for systems
1 and 2.

At the bottom line of this diagram, H0
t1=t2=0 represents the identical Hilbert spaces H(1)

t1=0 ≡ H
(2)
t2=0.
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Imposing the condition that the transformation A(t) is a point transformation implies that t2 will be related to t1 in a specific way to be
determined. The corresponding unitary transformation A(t) then coincides with the (generalized) quantum Arnold transform, introduced in
Ref. 5 for the case in which system 1 is the free particle and in Ref. 23 for the general case.

To simplify the discussion, we shall assume that system 1 is the GCK oscillator in Eq. (14), while system 2 is the simple harmonic oscillator
[ω2(t) = Ω and m2(t) = m0 = m1(0)].

In this case, the commutative diagram simplifies to

where we have denoted τ = t2, t = t1, H0
≡ H(1)

τ=0 = H
(2)
t=0, Ht ≡ H(2)(t), U(t) ≡ U1(t), and U0(τ) ≡ U2(τ).

Using the commutativity of the diagram and the fact that all operators are unitary, we have that A(t) = U0(τ)U(t)−1. In Refs. 5 and 23, it
is shown that t and τ are related by a reparameterization in time (not depending on x or p), that is, τ = r(t),

A(t) = U0(r(t))U(t)−1, B(t) = A(t)−1
= U(t)U0(r(t))−1. (45)

Using the expression obtained for the generalized Fresnel transform, F(t) = U0(t)U(t)−1, we can relate both transforms,

A(t) = R(t)F(t), (46)

where
R(t) = U0(r(t))U0(t)−1

= U0(r(t) − t), (47)

where in the last equality, we have used the fact that system 2 (the simple harmonic oscillator) has a time-independent Hamiltonian.
Then, we have that B(t) satisfies a generalized Schrödinger equation,

i
∂B(t)
∂t

B(t)−1
= H(t) − r′(t)B(t)H0B(t)−1, B(0) = I, (48)

similar to that of the evolution operator U(t) [Eq. (12)] but modified by the extra term −r′(t)B(t)H0B(t)−1. The WN method can be easily
modified in order to obtain a factorized version of B(t), as we did in Sec. IV.

Using the same basis as in Sec. III, for the particular ordered basis B1, the expression of B(t) is

B(t) = ea1(t)V ea2(t)Sea3(t)K , (49)

where, now, the functions gi(t), i = 1, 2, 3 verify the new non-linear equations,

−ia′1(t) = r′(t)m0Ω2 ea2(t) +
W(t)
m0

a1(t)2
−

m0ω2(t)
W(t)

,

−ia′2(t) =
2W(t)

m0
a1(t) + 2r′(t)m0Ω2 a3(t),

−ia′3(t) =
W(t)
m0

ea2(t)
−

r′(t)
m0

+ r′(t)m0Ω2 a3(t)2.

(50)

Imposing the condition that a3(t) vanishes in order to cancel the Fresnel propagator in Eq. (49), we obtain the condition r′(t) = ea2(t)W(t).
Substituting this into the first and second equations, we obtain a coupled system of nonlinear Riccati equations that can be transformed into
a second-order linear differential equation with a similar change to that in Eqs. (23) and (25),

a1(t) = i
m0b′(t)

W(t)b(t)
,

a2(t) = − log b(t)2, (51)

where, now, b(t) satisfies the generalized Ermakov equation,23
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b″(t) −
W′(t)
W(t)

b′(t) + ω(t)2b(t) =
Ω2

b(t)3 , b(0) = 1, b′(0) = 0. (52)

From the expression of a2(t), we derive the value of r(t) solving

r′(t) =
W(t)
b(t)2 , r(0) = 0. (53)

The solutions to Eq. (52) can be obtained from the solutions to Eqs. (41)–(44) by

b(t)2
= Ω2u1(t)2 + u2(t)2. (54)

Note that, since u1(t) and u2(t) are independent solutions of (24), their Wronskian never vanishes, and therefore, u1(t) and u2(t) cannot
vanish simultaneously. Thus, b(t) never vanishes and can be taken to be positive. This is an important feature of the Arnold transformation
mapping the GCK oscillator to the harmonic oscillator.

The construction with the basis B2 follows the same lines as in Sec. III B.

VI. PARTICULAR CASES
From the generalized Schrödinger equation (48) and the corresponding non-linear equations (50), we can recover the previous cases

choosing some particular values.
For instance, if r(t) = 0, we obtain the Schrödinger equation (12) and Eqs. (50) reduce to Eqs. (22). When solving these equations, we

can no longer impose a3(t) = 0, and we are in the same situation as in Sec. III, recovering B(t) = U(t) containing the Fresnel propagator.
Obviously, in this case, B(t) cannot be interpreted as a transformation to another system but just as unitary time evolution inside the same
system.

We would now like to look at the general Fresnel transform and compare with the results given in Ref. 27 for the particular case of
a simple Caldirola–Kanai oscillator. Choosing r(t) = t (the time diffeomorphism is the identity), R(t) = I and the generalized Schrödinger
equation (48) leads to Eq. (37). The non-linear equations (50) reduce to

−ia′1(t) = m0Ω2 ea2(t) +
W(t)
m0

a1(t)2
−

m0ω2(t)
W(t)

,

−ia′2(t) =
2W(t)

m0
a1(t) + 2m0Ω2 a3(t),

−ia′3(t) =
W(t)
m0

ea2(t)
−

1
m0

+ m0Ω2 a3(t)2.

(55)

For the case Ω = 0, we recover the GFT G(t), ai(t) = f i(t), i = 1, 2, 3, mapping the free particle to a GCK system, as in Sec. IV. This
transform does contain the Fresnel propagator [since, in general, we cannot impose a3(t) = 0].

If Ω ≠ 0, the transform maps the harmonic oscillator to a GCK system obtaining a new GFT, which also contains the Fresnel propagator.
If we further demand that a3(t) = 0, then G(t) becomes a point transformation (see Appendix B), but this imposes a relation between the
frequencies,

ω(t)2 +
W″(t)
2W(t)

−
3W′(t)2

4W(t)2 = Ω
2. (56)

For the case of the simple Caldirola–Kanai oscillator, with m(t) = m0e2γt and ω(t) = ω0, this translates into the condition Ω =
√
ω2

0 − γ2,
recovering the result in Ref. 27.

However, we should be careful when imposing the condition a3(t) = 0. For this case, Eqs. (55) lead to a solution for a1(t) given by a
constant,

a1(t) = im0γ , a2(t) = 2γt, (57)

and thus, it cannot satisfy the initial condition a1(0) = 0. Therefore, the general Fresnel transform G(t) is no longer the identity operator at
t = 0 as was assumed in Eq. (37). This can be accounted for by modifying the commutative diagram in Sec. IV with a new one of the form

(58)
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where, now, G(t) = U(t)TU0(t)−1 satisfies G(0) = T, with T being a non-trivial unitary transformation relating H0
t=0 and Ht=0. For the

case of the CK oscillator, T = e
i
2 m0γX2

, and this reproduces the results in Ref. 27 for the case of a point general Fresnel transform.

VII. INTEGRAL EXPRESSIONS OF THE EVOLUTION, GENERALIZED FRESNEL, AND ARNOLD TRANSFORMS
Using the results of Appendix B, we provide the explicit expression, as integral transforms, of the operators discussed in Secs. III, IV

and V. In particular, using Eqs. (B11)–(B13), the factorized version (for the ordering B1) of the evolution operator, generalized Fresnel
transform, and Arnold transform can be obtained.

A. Integral expressions of operators
For the evolution operator,

ΨU (x, t) = U(t)Ψ0(x) = eg1(t)V eg2(t)Seg3(t)KΨ0(x)

= e
1
2 g1(t)x2

e
g2(t)

4
1

√
2πg3(t)

∫

∞

−∞
dx′e

− 1
2g3(t)(e

g2(t)
2 x−x′)

2

Ψ0(x′)

=

√
m0s(u2(t))
2πiu1(t)

e
im0u′2(t)

2W(t)u2(t) x2

∫

∞

−∞
dx′e

im0u2(t)
2u1(t) (

x
∣u2(t)∣−x′)

2

Ψ0(x′),

(59)

where Ψ0(x) stands for any initial state (at t0 = 0) for the GCK oscillator and ΨU (x, t) stands for its evolution under U(t). In the last equation,
s stands for the sign function.

For the GFT transform,

ΨG(x, t) = G(t)ψ(x, t) = e f 1(t)V e f 2(t)Se f 3(t)Kψ(x, t)

= e
1
2 f 1(t)x2

e
f 2(t)

4
1

√
2π f 3(t)

∫

∞

−∞
dx′e

− 1
2 f 3(t)(e

f 2(t)
2 x−x′)

2

ψ(x′, t)

=

√
m0s(u2(t))

2πi(u1(t) − tu2(t))
e

im0u′2(t)
2W(t)u2(t) x2

∫

∞

−∞
dx′e

im0u2(t)
2(u1(t)−tu2(t)) (

x
∣u2(t)∣−x′)

2

ψ(x′, t),

(60)

where ψ(x, t) represents an arbitrary state for the free particle and ΨG(x, t) represents its transformed state for the GCK oscillator. Note that
both states are given at the same time t.

For the Arnold transform,

ΨB(x, t) = B(t)ψ(x, τ) = ea1(t)V ea2(t)Sψ(x, r(t))

= e
1
2 a1(t)x2

e
a2(t)

4 ψ(e
a2(t)

2 x, r(t))

=
1
√

b(t)
e

im0b′ (t)
2W(t)b(t) x2

ψ(
x

b(t)
,∫

t

0

W(t′)
b(t′)2 dt′),

(61)

where ψ(x, τ), now, represents an arbitrary state for the standard harmonic oscillator at time τ and ΨB(x, t) represents its transformed state
for the GCK oscillator at time t. Both times are related by τ = r(t) = ∫

t
0

W(t′)
b(t′)2 dt′ = arctan(Ωu1(t)

u2(t) ).
It should be stressed that ΨU (x, t) = ΨG(x, t) = ΨB(x, t) if ψ(x, 0) = Ψ0(x), as a consequence of the commutative diagrams in Secs. IV

and V. Therefore, we shall focus on the evolution operator in the rest of this section.

B. Caustic points
Note that the integral expressions of U(t) and G(t) are undefined when u2(t) = 0 [although u1(t) appears in the denominator inside the

Fresnel propagator, when u1(t) = 0, the Fresnel propagator is the identity; see Appendix B]. In addition, when u2(t) = 0, all functions gi(t) [or
f i(t)] diverge. More precisely, both g1 and g3 have a simple pole, while g2 has a logarithmic singularity [the same applies for f i(t)].

This singular behavior is spurious in the sense that the evolution operator is well defined for all times, but the factorization (for the
chosen basis and order) is not possible for certain elements of the SU(1,1) group (see Refs. 13 and 28). It should be stressed that even if the
evolution operator in its factorized form cannot be computed at the singularities, its action on particularly well-behaved initial states (such as
number states or coherent states of the standard harmonic oscillator) is defined for all times; see the discussion below.

The time values ts when u2(ts) = 0 have an interesting feature, and they play an important role in the semiclassical theory of calculus of
variations, where they are referred to as caustic or focal points, as there are infinite solutions of the classical equations verifying the boundary
conditions. For these values, the phase of the evolution operator experiences a jump, known as Guoy phase19 (see also Ref. 29), which can
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be observed experimentally, and it is related to the Maslov index and Morse theory.17 For an account of this phenomenon, see Ref. 15 and
references therein, where the computation of the propagator in the path integral approach for the standard harmonic oscillator is discussed.

As a consequence of this singular behavior, if analytic expressions for the solutions u1 and u2 are not available, then gi(t) have to be
computed numerically from Eqs. (22). Then, it will not be possible to obtain their values outside of the interval defined by two consecutive
zeros of u2 containing t0, and therefore, it will not be possible to compute the evolution operator (or the GFT) in its factorized form outside
this interval (unless a different t0 in a different interval is chosen).

However, when analytic expressions for u1 and u2 are available, even if the gi(t) are singular at the zeros of u2, the evolution operator
in its factorized form can be computed directly for all values of t, except at the zeros of u2. A relevant question is thus if there is any way of
computing the expression of U(t) at the zeros of u2(t) using its factorized form.

Our approach consists in performing a limiting procedure with a careful analysis of the behavior of the solutions u1(t) and u2(t) near a
zero of u2(t). For that purpose, if, as before, ts is a zero of u2(t) (there can be none, a finite, or an infinite number of them),

u2(ts) = 0, u′2(ts) ≠ 0, u1(ts) = −
W(ts)
u′2(ts)

≠ 0 (62)

since u2 is not a trivial solution and the Wronskian W(ts) cannot be zero. The limit is then

lim
t→t±s

U(t)Ψ0(x) = e±i π4 e−m0
u′1(ts )u′2(ts )

W(ts )2 V em0
∣u′2(ts )∣
W(ts ) SΨ̂0(∓x), (63)

where Ψ̂0 is the Fourier transform of Ψ0. The ± sign at the right-hand side appears since s(u2(t±s )u′2(t±s )) = ±1, s(.) being the sign function.
Observe that at the singular value ts, the initial functionΨ0 is Fourier transformed and rescaled by m0

∣u′2(ts)∣
W(ts)

(in addition to a local phase).
When crossing the singularity, the wave function experiences a parity reversal and a phase jump by e±i π2 . This is the abovementioned Guoy
phase or Maslov correction. In addition, since the phase varies continuously between two consecutive singular values of t, the effect of the
phase jump is accumulative, i.e., if starting from t0 = 0 we need to pass through k singularities to reach t, then the total phase shift is eik π

2 .

C. Action of the evolution operator on particular initial states
Let us illustrate the action of the evolution operator on a couple of initial states. We shall consider two diametrically opposite states: a

plane wave and a Gaussian state. The plane wave is an eigenstate of the free particle Hamiltonian, and it is not normalizable. The Gaussian
state is an eigenstate of the standard harmonic oscillator, and it is a very well-behaved state (Gaussian functions are usually used as regularizing
functions).

For the plane wave,

Ψ0(x) =
1
√

2π
eiPx, Ψ̂0(x) = δ(x − P), (64)

ΨU (x, t) =
1

√
2π∣u2(t)∣

e
−i

u′1(t)

2m0u′2(t)
P2

e
i

m0u′2(t)
2W(t)u2(t) (x+ W(t)s(u2(t))

m0u′2(t)
P)

2

, (65)

lim
t→t±s

ΨU (x, t) = e±i π4

¿
Á
ÁÀ iW(t±s )

m0∣u′2(t±s )∣
e
−i

u′1(t±s )

2m0u′2(t±s )
P2

δ(x ±
W(t±s )

m0∣u′2(t±s )∣
P). (66)

In the last equation, we have made use of the limit of the non-relativistic free propagator,

lim
a→0

√
m0

2πia
ei m0

2a (x−x′)2

= δ(x − x′). (67)

It can be easily checked that Eq. (66) coincides with the general case of Eq. (63), once P in the exponential is written in terms of x as a
consequence of the Dirac delta.

For the Gaussian state,

Ψ0(x) = (
m0Ω
π
)

1/4
e−

1
2 m0Ωx2

, Ψ̂0(x) = (
1

m0Ωπ
)

1/4
e−

1
2m0Ω

x2

, (68)

ΨU (x, t) = (
m0Ω
π
)

1/4 1
√

b(t)
e−

i
2 arctan( Ωu1(t)

u2(t) )e
im0

2
b′ (t)

W(t)b(t) x2

e−
1
2 m0Ω x2

b(t)2 , (69)
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lim
t→t±s

ΨU (x, t) = (
m0Ω
π
)

1/4
e±i π4

¿
Á
ÁÀ ∣u′2(t±s )∣

ΩW(t±s )
e
−

im0
2

u′1(t±s )u′2(t±s )

W(t±s )2 x2

e
− 1

2 m0
u′2(t±s )2

ΩW(t±s )2 x2

, (70)

where we have taken into account that limt→t±s arctan(Ωu1(t)
u2(t) ) = ∓

π
2 . It can be easily checked that Eq. (70) coincides with the general case of

Eq. (63).
It is worth to note that the evolution operator acting on a Gaussian state [Eq. (69)] is well defined for all values of time, except for the

phase jump at ts (compare with Refs. 9 and 10, where the Wei–Norman factorization and the same basis and ordering B1 are used). Thus, it
could seem that no singularities appear in this case, but this is due to the regularizing properties of the Gaussian function. For the plane wave
case in Eq. (65), it is evident that the evolution operator is not defined at the singular times since the limit is a delta function and must be
computed with extreme care [cf. (67)].

The similarities with Fourier optics should also be remarked,18 where a thin lens, in the paraxial approximation, behaves as an optical
Fourier transform. There, a plane wave with momentum P arriving to it is transformed, at the focal point, into a light spot (Dirac delta) at
position (proportional to) −P, a situation completely analogous to Eqs. (64)–(66). The regularized version of this situation [Eqs. (68)–(70)]
has an optical analog on a Gaussian beam focused into another Gaussian beam (its Fourier transform) at the focal point of the lens.

VIII. CALDIROLA–KANAI EXAMPLE
In the original Caldirola–Kanai example, with constant frequency ω(t) = ω0 and constant damping coefficient 2γ, or, equivalently, mass

function m(t) = m0e2γt , the EL equation (24) can be solved analytically, with solutions (following the notation of Sec. III A)

u1(t) =
1
ωd

e−γt sin(ωdt),

u2(t) =
1
ωd

e−γt
(ωd cos(ωdt) + γ sin(ωdt)), (71)

where ωd =
√
ω2

0 − γ2 is the displaced frequency that can be positive, zero, or pure imaginary, leading to the underdamped, critical, or over-
damped regimes, respectively. In the following, we shall discuss the underdamped regime for γ ∈ [0,ω0). In Fig. 1, a plot of the two functions
is shown for this case.

We shall consider in Subsections VIII A–VIII D, the factorized form of the evolution operator and the related integral transforms,
particularized to the Caldirola–Kanai example.

FIG. 1. Graphs of u1 and u2 (dashed) for γ = ωd = π and m0 = 1. The dashed vertical lines indicate the zeros of u2.
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A. Evolution operator
The evolution operator with the ordering B1 [Eq. (21)] is obtained once Eqs. (22) are solved. Using the solutions in terms of u1 and u2

given by Eqs. (23), (25), and (26), we find

g1(t) = −
im0ω2

0e2γt sin(ωdt)
γ sin(ωdt) + ωd cos(ωdt)

, (72)

g2(t) = − log(
e−γt

ωd
(γ sin(ωdt) + ωd cos(ωdt))

2

, (73)

g3(t) =
i

m0

sin(ωdt)
γ sin(ωdt) + ωd cos(ωdt)

. (74)

It should be stressed that in the particular case of the CK Hamiltonian, g1(t) = −m2
0ω

2
0

W(t) g3(t). Note also that for t = tk =
1
ωd

(kπ
− arctan ωd

γ ), k ∈ Z, g1 and g3 have a simple pole, while g2 has a logarithmic singularity. See Fig. 2 for a graph of these functions showing
the singularities.

Thus, for the CK case, the evolution operator in its factorized form (and for the ordering B1) with the initial condition t0 = 0 can only
be computed inside each interval J k = (tk, tk+1), k ∈ Z, of width π

ωd
, and not at the singular values tk. In particular, the interval J k containing

the initial condition t0 = 0 is obtained for k = 0. In this section, we shall use the same notation tk for k = 0 and the initial time t0 of Eq. (1), the
meaning being obvious from the context.

The times tk are the concrete realization of the singular times ts discussed in Sec. VII, and all results obtained there applies here
particularized to the CK case.

B. Fresnel transform to the free particle
In the case of the Fresnel transform to the free particle, the expressions are identical to those of the evolution operator,

g1(t) = −
im0ω2

0e2γt sin(ωdt)
γ sin(ωdt) + ωd cos(ωdt)

,

g2(t) = − log(
e−γt

ωd
(γ sin(ωdt) + ωd cos(ωdt))

2

,

g3(t) =
i

m0
(

sin(ωdt)
γ sin(ωdt) + ωd cos(ωdt)

− t),

(75)

except that the last function includes a shift by − i
m0

t. The Fresnel transform to the free particle has the same local character as the evolution
operator; see Sec. VII.

C. Arnold transform to the harmonic oscillator
In the case of the Arnold transform to the harmonic oscillator, the solution to the generalized Ermakov equation (52) is given by

b(t) =
e−γt

ωd

√

(γ2 +Ω2)sin2(ωdt) + γωd sin(2ωdt) + ω2
d cos2(ωdt). (76)

FIG. 2. Graphs of −ig1, g2, and −ig3, respectively, for γ = ωd = π and m0 = 1. The dashed lines indicate the asymptotes (zeros of u2) at the singular values.
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With this solution, the expression of gi(t) are easily computed using (51),

g1(t) = −
ie2γt sin(ωdt)(γ(ω2

0 +Ω2
) sin(ωdt) + ωd(ω2

0 −Ω2
) cos(ωdt))

(γ2 +Ω2)sin2(ωdt) + γωd sin(2ωdt) + ω2
d cos2(ωdt)

,

g2(t) = − log
⎛

⎝

e−2γt
((γ2 +Ω2

)sin2(ωdt) + γωd sin(2ωdt) + ω2
d cos2(ωdt))

ω2
d

⎞

⎠
,

g3(t) = 0,

(77)

where the last function is zero by construction (point transformation). In this case, the information is encoded in the diffeomorphism in time
appearing in Eq. (45).

It should be stressed that the solution b(t) to the generalized Ermakov equation never vanishes; therefore, the functions gi have no
singularities (except at infinity). Thus, the Arnold transform to the harmonic oscillator has a global character; see Sec. VII. See also Ref. 30 for
a detailed discussion of this case.

D. Arnold transform to the free particle
In the case of the Arnold transform to the free particle, the expression of the gi(t) is

g1(t) = −
im0ω2

0e2γt sin(ωdt)
γ sin(ωdt) + ωd cos(ωdt)

,

g2(t) = − log(
e−γt

ωd
(γ sin(ωdt) + ωd cos(ωdt))

2

,

g3(t) = 0,

(78)

where, again, the last function is zero by construction. As in the case of the evolution operator or the Fresnel transform, the gi diverges for the
same finite values tk. In fact the Arnold transform to the free particle, the GFT, and the evolution operator coincide when Ψ0(x) = ψ(x, 0); see
Sec. VII. See also Refs. 5 and 31 for a discussion of this case.

IX. CONCLUSIONS
In this paper, we have applied the Wei–Norman method, with SU(1, 1) algebra, to the GCK oscillator, obtaining a factorization for the

evolution operator in terms of functions gi(t) appearing in the exponential factors that can be expressed in terms of the solutions of the Euler–
Lagrange equations associated with the classical version of the GCK Hamiltonian or a mirror version of it (with inverted mass), depending on
the chosen ordered basis of the Lie algebra. In this way, we provide a semiclassical interpretation to the WN method, building the evolution
operator in terms of classical solutions.

We also provide factorizations, by means of a modified WN method, for other integral transforms such as the Fresnel transform and the
Arnold transforms and their generalizations, which relate different GCK systems in a unitary way. The Arnold transform is characterized by
the condition of being a point transformation (i.e., a local transform), implying that its factorization involves only two factors. The pay-off for
this simplicity is the need for an extra reparameterization in time, implying that the Arnold transform maps solutions of one system into the
other but with different, although related, evolution times.

One of the problems with factorization techniques such as the WN method is the impossibility of obtaining the factorization for certain
time values ts, where all the functions gi diverge. These correspond to zeros of u2(t) and are usually denoted in the literature focal points
or caustics. We have been able to obtain the expression of the evolution operators at the caustics using a fine-tuning analysis of the limiting
process when t approaches ts, obtaining that the evolution operator involves the Fourier transform of the initial state, followed by a rescaling
and a local phase. In addition to this, there is a parity transformation and a phase jump when crossing the caustic.

The example of the CK oscillator (with constant frequency and damping coefficient), as the simplest example of time-dependent
Hamiltonian with SU(1, 1) symmetry, is thoroughly discussed.

The techniques developed in this paper can also be applied to other groups, such as SU(2), with applications in the case of a spin in
the presence of a time-dependent magnetic field32 or in photonic systems such as waveguide arrays with a z-dependent refraction index and
couplings.33

It would also be interesting to generalize our construction to other cases where the WN method is not directly applicable but where we
can still use the interaction picture,34 apply a mean field approximation,35 or a perturbative treatment.

A further interesting study would be the construction of Wigner functions using the WN method, thus making a connection between
the semiclassical description provided by the Wigner functions and the one provided in this paper.
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APPENDIX A: GROUPOID PROPERTY OF THE EVOLUTION OPERATOR IN THE WEI–NORMAN FORMULATION

In this appendix, we shall delve into the groupoid property satisfied by the evolution operator given in Eq. (5).
The main difference of the groupoid property (5) with respect to the group property (6) [apart from the obvious dependence in two

parameters (t, t0) in the case of groupoid] is that the composition of two evolution operators U(t1, t0) and U(t2, t′1), U(t2, t′1)U(t1, t0), requires
t′1 = t1, i.e., not all elements of the groupoid can be composed.

In addition, the main difference of the groupoid with respect to the semigroup is that in the semigroup, the existence of the inverse is not
guaranteed for all elements, not even the existence of the identity element.

The structure of a groupoid is more similar to a group than to a semigroup. Elements of a groupoid can be unitary, for instance (as in
the case of the Schrödinger equation), but elements of a semigroup cannot be unitary, as it happens in the case of the evolution under the heat
equation or in open systems.

Let us study the implications of the groupoid property in the Wei–Norman context, i.e., what are the conditions required on the functions
gi in the WN factorization in order for the evolution operator to satisfy the groupoid property (5). To simplify the notation, we shall consider
the case of the GCK oscillator studied in Sec. III, where the Lie algebra is SU(1, 1). We shall also restrict to the ordering B1 of Sec. III A for
concreteness. Consider the factorized evolution operator given in Eq. (21), which, restoring the dependence on the initial time t0, can be
written as

U(t, t0) = eg1(t,t0)V eg2(t,t0)Seg3(t,t0)K , U(t0, t0) = I. (A1)

In this case, the groupoid property (5) for the Wei–Norman factorized evolution operator is written as

U(t2, t0) = eg1(t2 ,t0)V eg2(t2 ,t0)Seg3(t2 ,t0)K
= U(t2, t1)U(t1, t0)

= eg1(t2 ,t1)V eg2(t2 ,t1)Seg3(t2 ,t1)K eg1(t1 ,t0)V eg2(t1 ,t0)Seg3(t1 ,t0)K . (A2)

It can be shown that this equation implies the following restriction for the functions gi:

g1(t2, t0) = g1(t2, t1) +
eg2(t2 ,t1)g1(t1, t0)

1 − g1(t1, t0)g3(t2, t1)
,

g2(t2, t0) = g2(t2, t1) + g2(t1, t0) − log [1 − g1(t1, t0)g3(t2, t1)]2,

g3(t2, t0) = g3(t1, t0) +
eg2(t1 ,t0)g3(t2, t1)

1 − g1(t1, t0)g3(t2, t1)
.

(A3)

It should be stressed that these equations are compatible with the unitarity conditions mentioned in Sec. III A, namely, that g1 and g3
are pure imaginary, while g2 is real.

In addition, the condition for the inverse in (5) implies

g1(t0, t1) = −
e−g2(t1 ,t0)g1(t1, t0)

1 − e−g2(t1 ,t0)g1(t1, t0)g3(t1, t0)
,

g2(t0, t1) = −g2(t1, t0) − log [1 − e−g2(t1 ,t0)g1(t1, t0)g3(t1, t0)]2,

g3(t0, t1) = −
e−g2(t1 ,t0)g3(t1, t0)

1 − e−g2(t1 ,t0)g1(t1, t0)g3(t1, t0)
.

(A4)

Equations (A3) are of functional type; therefore, the question arises if these functional equations are equivalent to the WN equations (22)
(under the assumption of differentiability or at least continuity of the gi). The answer is affirmative, but some minor modifications should be
made to Eq. (22) to make explicit the dependence on t0,
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−ig′1(t, t0) =
1

m(t)
g1(t, t0)2

−m(t)ω2(t), g1(t0, t0) = 0,

−ig′2(t, t0) =
2

m(t)
g1(t, t0), g2(t0, t0) = 0,

−ig′3(t, t0) =
1

m(t)
eg2(t,t0), g3(t0, t0) = 0,

(A5)

where the prime indicates the derivative with respect to the first argument. We restore the use of m(t) instead of W(t) in the equations since
now m0 = m(0) does not make sense in this setting. Now, we are going a step forward, and we calculate the initial velocities [using the initial
conditions in Eq. (A5)],

g′1(t0, t0) = −im(t0)ω2(t0),

g′2(t0, t0) = 0,

g′3(t0, t0) =
i

m(t0)
.

(A6)

These conditions are clearly valid for any value of t0; therefore, we can rewrite Eqs. (A5) as

g′1(t, t0) = g′3(t, t)g1(t, t0)2 + g′1(t, t), g1(t0, t0) = 0,

g′2(t, t0) = 2g′3(t, t)g1(t, t0), g2(t0, t0) = 0,

g′3(t, t0) = g′3(t, t)eg2(t,t0), g3(t0, t0) = 0.

(A7)

If now we compute the derivatives g′i (t, t0) as g′i (t, t0) = limh→0
gi(t+h,t0)−gi(t,t0)

h and express gi(t + h, t0) in terms of g j(t + h, t) and g j(t, t0)
using Eq. (A3), we arrive to Eqs. (A7) [using also that g′2(t, t) = 0 from Eq. (A6)].

For completeness, we provide the expression of the WN functions gi(t, t0) in terms of the solutions of the classical equations of motion,
generalizing Eqs. (23), (25), and (26). First of all, we should obtain the solutions of Eqs. (24) and (27) but by satisfying the same initial
conditions at arbitrary t0 instead of t0 = 0. Denoting by u1(t, t0) and u2(t, t0) those solutions, they are related to u1(t) and u2(t) by a canonical
transformation,

(
u1(t, t0)
u2(t, t0)) =

1
W(t0)

(
u2(t0) −u1(t0)
−u′2(t0) u′1(t0) )(

u1(t)
u2(t)). (A8)

Now, it can be checked that the following functions

g1(t, t0) = im(t)
u′2(t, t0)
u2(t, t0)

,

g2(t, t0) = − log u2(t, t0)2,

g3(t, t0) =
i

m(t0)
u1(t, t0)
u2(t, t0)

,

(A9)

satisfy Eq. (A5).

APPENDIX B: LINEAR INTEGRAL TRANSFORMS AND ITS RELATION TO LINEAR CANONICAL TRANSFORMATIONS
IN PHASE SPACE

Linear integral transforms13,14 are operators characterized by an integral kernel,

ĈΨ(x) = ∫
∞

−∞
C(x, x′)Ψ(x′)dx′, (B1)

where C(x, x′) is the integral kernel of the transform Ĉ.
A well-known example of this kind of transform is Fourier Transform (FT), where the integral kernel is CFourier(x, x′) = 1

√
2π

e−ix′ x, with
its generalizations to the Fractional Fourier Transform (FrFT), with kernel
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CFrFT(x, x′) =
1

√
2πi sin θ

ei (x2+x′2) cos θ−2xx′
2 sin θ . (B2)

In the previous equation, choosing θ = ωt, we recover the propagator describing time evolution in a harmonic oscillator,

Cosc(x, x′, t) =
√

mω
2πih̵ sin(ωt)

ei mω
h̵

(x2+x′2) cos(ωt)−2xx′
2 sin(ωt) , (B3)

where the dimensional constants (m, ω, and h̵) have been restored.
Another important integral transform, with applications in optics, is the Fresnel Transform, with kernel

CFresnel(x, x′, z) =
1

iλz
ei π

λz (x−x′)2

, (B4)

describing propagation in free space along the z direction of waves of wavelength λ.
A natural generalization of these transforms consists in considering the most general quadratic polynomial in x and x′ in the exponent

of the integral kernel, thus leading to what is known as linear canonical transform13 or Generalized Fresnel Transform (GFT),14 with kernel

CM(x, x′) =
1

√
2πib

ei ax′2−2xx′+dx2

2b , (B5)

which is the exponential of a quadratic form related to the matrix

M = (a b
c d), (B6)

satisfying det(M) = ad − bc = 1. Thus, M ∈ SL(2,R) ≈ Sp(1,R). Note that c does not appear in the expression of the kernel, given that c = ad−1
b

from the condition on the determinant.
Equation (B5) is not well defined in the case b = 0, i.e., for lower triangular matrices. In this case, d = 1

a ≠ 0, and the integral kernel can
be written as13

CM(b=0)(x, x′) =
1
√

a
ei c

2a x′2δ(x − x′/a). (B7)

The resulting integral transformation in this case is

ĈM(b=0)Ψ(x) =
1
√

a
ei c

2a x2

Ψ(x/a) (B8)

and is called geometric or point transformation. A point transformation in phase space is a canonical transformation (q⃗, p⃗)→ (Q⃗, P⃗) induced
by a coordinate transformation, i.e., if Q⃗ = Q⃗(q⃗, t), then P⃗ = J(q⃗, t)−1p⃗, where J(q⃗, t) is the Jacobian of the coordinate transformation. A point
transformation does not involve an integral (and it is therefore local), corresponding to a dilation by 1/a followed by a multiplication by a
phase quadratic in x. The factor 1

√
a multiplying the function ensures the unitarity of the dilation.

Note that the GFT transform is a unitary transformation with the usual L2(R) scalar product. The action on operators X and P by this
unitary transformation is

ĈMX Ĉ†
M = dX − bP ≡ X′,

ĈMP Ĉ†
M = −cX + aP ≡ P′. (B9)

Thus, (X′

P′) =M−1
(

X
P), and therefore, ĈM constitutes a unitary twofold representation of the group SL(2,R) ≈ Sp(1,R), known as the

metaplectic representation.

1. One-parameter transform subgroups
Since the GFT transform constitutes a unitary representation of the SL(2,R) group of linear canonical transformations in phase space,

we can use well-known factorization formulas in terms of uniparametric subgroups. Let us define the subgroups

Mf
= (

1 b
0 1), Mg

= (
1 0
c 1), Md

=
⎛

⎝

a 0

0
1
a

⎞

⎠
. (B10)
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Explicitly,

ĈM f Ψ(x) =
1

√
2πib
∫

∞

−∞
dx′e

i
2b (x−x′)2

Ψ(x′),

ĈMgΨ(x) = e
ic
2 x2

Ψ(x),

ĈMdΨ(x) =
1
√

a
Ψ(x/a).

(B11)

These transformations are well known in the optics literature. The transformation generated by M f is known as the Fresnel propagator
in free space (in quantum mechanics, it corresponds to the evolution operator of a free Galilean particle), the transformation generated by M g

is known as the quadrature phase operator (or Gauss–Weierstrass operator), and the transformation generated by Md is known as the dilation
operator (in quantum mechanics, it corresponds to a squeezing operator).

2. Infinitesimal generators of integral transforms
It is useful to find the differential operators that generate the integral transform for each one of the uniparametric subgroups, in the sense

that
ĈM(t)Ψ(x) = etNΨ(x). (B12)

The differential operator N can be computed by differentiation with respect to the parameter t at t = 0 (assuming that t = 0 corresponds
to the identity transform). For each one of the uniparametric subgroups discussed in Appendix B 1, the corresponding infinitesimal generators
are13

N f
=

i
2
∂2

∂x2 = iK,

Ng
=

i
2

x2
= iV ,

Nd
= −(x

∂

∂x
+

1
2
) = −2S,

(B13)

where we have taken b = t, c = t, and a = et in Eq. (B10). Thus, up to constants, they coincide with the operators K, V , and S defined in Eqs.
(15)–(17), showing that operators such as the evolution operator, the general Fresnel transform, or the Arnold transform are, in fact, linear
integral transforms that can be written as the product of the uniparametric subgroups of integral transforms discussed in Appendix B 1.
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10Ş. A. Büyükaşık, “Squeezing and resonance in a generalized Caldirola–Kanai type quantum parametric oscillator,” J. Math. Phys. 59, 082104 (2018).
11A. Palma and I. Pedraza, “On the time-dependent solutions of the Schrödinger equation,” in Topics in the Theory of Chemical and Physical Systems edited by S. Lahmar,
J. Maruani, S. Wilson, and G. Delgadp-Barrio (Springer, 2007), pp. 147–150.
12A. Palma, M. Villa, and L. Sandoval, “On the time-dependent solutions of the Schrödinger’s equation. II. The one-mode field perturbed harmonic oscillator,” Int. J.
Quantum Chem. 112, 2441–2443 (2012).
13K. B. Wolf, Integral Transforms in Science and Engineering (Springer, Boston, 1979).
14D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its application to optics,” Opt. Commun. 126, 207–212 (1996).
15P. A. Horváthy, “The Maslov correction in the semiclassical Feynman integral,” Open Physics Cent. Eur. J. Phys. 9, 1 (2011).
16B. K. Cheng, “Exact evaluation of the propagator for the damped harmonic oscillator,” J. Phys. A: Math. Gen. 17, 2475 (1984).
17J. Milnor, Morse Theory, Annals of Mathematics Studies Vol. 51 (Princeton University Press, 1963).
18J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
19A. E. Siegman, Lasers (University Science Books, California, 1986).
20E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (Tata Mcgraw-Hill Publishing Co., Ltd., New Delhi, 1955).

J. Math. Phys. 61, 082107 (2020); doi: 10.1063/1.5143586 61, 082107-19

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1063/1.1703993
https://doi.org/10.1090/s0002-9939-1964-0160009-0
https://doi.org/10.1007/bf02960144
https://doi.org/10.1143/ptp/3.4.440
https://doi.org/10.1088/1751-8113/44/6/065302
https://doi.org/10.1103/physreva.84.062104
https://doi.org/10.1364/ol.39.002083
https://doi.org/10.1103/physrev.183.1057
https://doi.org/10.1063/1.4972293
https://doi.org/10.1063/1.5002186
https://doi.org/10.1002/qua.23253
https://doi.org/10.1002/qua.23253
https://doi.org/10.1016/0030-4018(95)00708-3
https://doi.org/10.2478/s11534-010-0055-3
https://doi.org/10.1088/0305-4470/17/12/018


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

21H. F. Baker, “On the integration of linear differential equations,” Proc. London Math. Soc. s1-35, 334–378 (1902).
22S. Blanes, F. Casas, J. A. Oteo, and J. Ros, “The Magnus expansion and some of its applications,” Phys. Rep. 470, 151–238 (2009).
23J. Guerrero and F. F. López-Ruiz, “The quantum Arnold transformation and the Ermakov–Pinney equation,” Phys. Scr. 87, 038105 (2013).
24N. Kh. Ibraglmov, “Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie),”
Russ. Math. Surv. 47, 89 (1992).
25J. Guerrero, F. F. López-Ruiz, V. Aldaya, and F. Cossío, “Symmetries of the quantum damped harmonic oscillator,” J. Phys. A: Math. Theor. 45, 475303 (2012).
26J. F. Cariñena, G. Marmo, and J. Nasarre, “The non-linear superposition principle and the Wei–Norman method,” Int. J. Mod. Phys. A 13, 3601–3627 (1998).
27S. Wang, H.-Y. Fan, and H.-C. Yuan, “Fresnel operator, squeezed state and Wigner function for Caldirola–Kanai Hamiltonian,” Mod. Phys. Lett. A 26, 1433 (2011).
28H.-y. Fan and L.-y. Hu, “Correspondence between quantum-optical transform and classical-optical transform explored by developing Dirac’s symbolic method,” Front.
Phys. 7, 261–310 (2012).
29S. Cruz y Cruz and Z. Gress, “Group approach to the paraxial propagation of Hermite–Gaussian modes in a parabolic medium,” Ann. Phys. 383, 257–277 (2017).
30J. Guerrero and F. F. López-Ruiz, “On the Lewis–Riesenfeld (Dodonov–Man’ko) invariant method,” Phys. Scr. 90, 074046 (2015).
31J. Guerrero, V. Aldaya, F. F. López-Ruiz, and F. Cossío, “Unfolding the quantum Arnold transformation,” Int. J. Geom. Methods Mod. Phys. 09, 1260011 (2012).
32M. Enríquez and S. Cruz y Cruz, “Exactly solvable one-qubit driving fields generated via nonlinear equations,” Symmetry 10, 567 (2018).
33B. M. Rodríguez-Lara, R. El-Ganainy, and J. Guerrero, “Symmetry in optics and photonics: A group theory approach,” Sci. Bull. 63, 244 (2018).
34R. Román-Ancheyta, M. Berrondo, and J. Récamier, “Parametric oscillator in a Kerr medium: Evolution of coherent states,” J. Opt. Soc. Am. B 32, 1651 (2015).
35M. Berrondo and J. Récamier, “Dipole induced transitions in an anharmonic oscillator: A dynamical mean field model,” Chem. Phys. Lett. 503, 180 (2011).

J. Math. Phys. 61, 082107 (2020); doi: 10.1063/1.5143586 61, 082107-20

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1112/plms/s1-35.1.333
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1088/0031-8949/87/03/038105
https://doi.org/10.1070/rm1992v047n04abeh000916
https://doi.org/10.1088/1751-8113/45/47/475303
https://doi.org/10.1142/s0217751x98001694
https://doi.org/10.1142/s0217732311035778
https://doi.org/10.1007/s11467-011-0206-z
https://doi.org/10.1007/s11467-011-0206-z
https://doi.org/10.1016/j.aop.2017.05.020
https://doi.org/10.1088/0031-8949/90/7/074046
https://doi.org/10.1142/s0219887812600110
https://doi.org/10.3390/sym10110567
https://doi.org/10.1016/j.scib.2017.12.020
https://doi.org/10.1364/josab.32.001651
https://doi.org/10.1016/j.cplett.2010.12.081

