Mostrar el registro sencillo del ítem
Unraveling the Effects of Melt–Mantle Interactions on the Gold Fertility of Magmas
dc.contributor.author | Tassara, Santiago | |
dc.contributor.author | González Jiménez, José María | |
dc.date.accessioned | 2020-03-26T08:02:12Z | |
dc.date.available | 2020-03-26T08:02:12Z | |
dc.date.issued | 2020-02-11 | |
dc.identifier.citation | Tassara S, Reich M, Konecke BA, González-Jiménez JM, Simon AC, Morata D, Barra F, Fiege A, Schilling ME and Corgne A (2020) Unraveling the Effects of Melt–Mantle Interactions on the Gold Fertility of Magmas. Front. Earth Sci. 8:29. [doi: 10.3389/feart.2020.00029] | es_ES |
dc.identifier.uri | http://hdl.handle.net/10481/60639 | |
dc.description | We thank Tony Lanzirotti and Matt Newville for assistance with μ-XANES analyses at the GeoSoilEnviroCars (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. | es_ES |
dc.description | The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feart.2020.00029/full#supplementary-material | es_ES |
dc.description.abstract | The oxidation state of the Earth’s mantle and its partial melting products exert a key control on the behavior and distribution of sulfur and chalcophile and siderophile elements between the mantle and crust, underpinning models of ore deposit formation. Whether the oxidized nature of magmas is inherited from the asthenospheric mantle source or acquired during ascent and differentiation is vigorously debated, limiting our understanding of the mechanisms of extraction of sulfur and metals from the mantle. Here, we focused on the redox-sensitive behavior of sulfur in apatite crystallized from quenched alkaline basaltic melts preserved within a peridotite xenolith from the El Deseado Massif auriferous province in southern Patagonia. We took advantage of this unique setting to elucidate the redox evolution of melts during their ascent through the subcontinental lithospheric mantle (SCLM) and grasp the inner workings of the Earth’s mantle during gold metallogenesis. Our data reveal that an initially reduced silicate melt (ΔFMQ −2.2 to −1.2) was oxidized to ΔFMQ between 0 and 1.2 during percolation and interaction with the surrounding peridotite wall-rock (ΔFMQ 0 to +0.8). This process triggered changes in sulfur speciation and solubility in the silicate melt, boosting the potential of the melt to scavenge ore metals such as gold. We suggest that large redox gradients resulting from the interaction between ascending melts and the surrounding mantle can potentially modify the oxidation state of primitive melts and enhance their metallogenic fertility. Among other factors including an enriched metal source and favorable geodynamic conditions, redox gradients in the mantle may exert a first-order control on the global-scale localization of crustal provinces endowed with gold deposits. | es_ES |
dc.description.sponsorship | This study was funded by the Iniciativa Científica Milenio through Millennium Nucleus for Metal Tracing along Subduction Grant NC130065. Additional funding for analytical work was provided by the FONDAP project 15090013 “Centro de Excelencia en Geotermia de Los Andes, CEGA.” ST acknowledges CONICYT for support through a Ph.D. scholarship #21170857. Grants RTI2018-099157-A-100 and RYC-2015-1796 provided funding for sample preparation and EPMA analyses. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The DID-UACh project #S-201505 financed the fieldwork. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Frontiers Media | es_ES |
dc.rights | Atribución 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Melt–mantle interaction | es_ES |
dc.subject | Oxidation state | es_ES |
dc.subject | Apatite | es_ES |
dc.subject | XANES | es_ES |
dc.subject | Gold | es_ES |
dc.subject | Ore deposits | es_ES |
dc.title | Unraveling the Effects of Melt–Mantle Interactions on the Gold Fertility of Magmas | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3389/feart.2020.00029 |