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The oxidation state of the Earth’s mantle and its partial melting products exert a
key control on the behavior and distribution of sulfur and chalcophile and siderophile
elements between the mantle and crust, underpinning models of ore deposit formation.
Whether the oxidized nature of magmas is inherited from the asthenospheric mantle
source or acquired during ascent and differentiation is vigorously debated, limiting our
understanding of the mechanisms of extraction of sulfur and metals from the mantle.
Here, we focused on the redox-sensitive behavior of sulfur in apatite crystallized from
quenched alkaline basaltic melts preserved within a peridotite xenolith from the El
Deseado Massif auriferous province in southern Patagonia. We took advantage of this
unique setting to elucidate the redox evolution of melts during their ascent through
the subcontinental lithospheric mantle (SCLM) and grasp the inner workings of the
Earth’s mantle during gold metallogenesis. Our data reveal that an initially reduced
silicate melt (1FMQ −2.2 to −1.2) was oxidized to 1FMQ between 0 and 1.2 during
percolation and interaction with the surrounding peridotite wall-rock (1FMQ 0 to +0.8).
This process triggered changes in sulfur speciation and solubility in the silicate melt,
boosting the potential of the melt to scavenge ore metals such as gold. We suggest
that large redox gradients resulting from the interaction between ascending melts and
the surrounding mantle can potentially modify the oxidation state of primitive melts and
enhance their metallogenic fertility. Among other factors including an enriched metal
source and favorable geodynamic conditions, redox gradients in the mantle may exert
a first-order control on the global-scale localization of crustal provinces endowed with
gold deposits.
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INTRODUCTION

The oxidation state of the Earth’s mantle is a fundamental
parameter on models that attempt to explain the formation of
metallogenic provinces on a lithospheric scale (Mungall, 2002;
Sillitoe, 2008; Richards, 2015). The oxygen fugacity (f O2), as
well as the contents of sulfur and chalcophile and siderophile
elements (i.e., Au, Ag, Cu, Ni, Os, Ir, Ru, Rh, Pt, Pd, Re;
hereafter “ore metals”) of primitive melts associated with the
formation of giant ore deposits are frequently attributed to be
either inherited directly from their asthenospheric mantle source
(Carmichael, 1991; Kelley and Cottrell, 2009), or the result of
variable degrees of differentiation at crustal levels (Lee et al.,
2002, 2010; Jenner et al., 2010; Tang et al., 2018). In contrast,
relatively little attention has been paid to melt–rock interaction
processes occurring in the subcontinental lithospheric mantle
(SCLM) that might lead to changes in the oxidation state and
composition of ascending magmas after partial melting in the
asthenosphere and before they reach crustal levels. For example,
Chin et al. (2014) and Griffin et al. (2018) explored the effects of
the SCLM on the composition of primary asthenosphere-derived
melts during their ascent and concluded that metasomatism
might be an important process that modifies the composition
and f O2 of ascending melts and fluids. More recently, Tollan
and Hermann (2019) also found that arc magmas oxidize during
ascent and reaction with surrounding peridotite before reaching
crustal levels. Therefore, melt–SCLM interaction processes might
have a pivotal impact on the metal fertility of ascending magmas.

Ore metals and sulfur are stored primarily within accessory
base metal sulfides and sulfide liquids in the mantle, and
their release and transfer into the overriding crust is partially
controlled by the f O2 of the magmatic system (Jugo, 2009;
Lorand and Luguet, 2016). This parameter reflects the oxidation
state of the system and is commonly expressed as logarithmic
units relative to the fayalite–magnetite–quartz mineral buffer
(1FMQ). Experimental studies have shown that sulfide (S2−)
is the dominant sulfur species in silicate melts under reducing
conditions (1FMQ < 0) (Jugo et al., 2005a, 2010). In contrast,
at 1FMQ > 2 the melt is dominated by sulfate (S6+) whereas
a sharp transition from sulfide toward the more soluble and
oxidized sulfate is observed around 1FMQ + 1 (Jugo et al.,
2010). Hence, the formation of oxidized magmas can efficiently
promote the titration of sulfur and ore metals from the mantle,
ultimately increasing the ore metal endowment of the overlying
crust (Sillitoe, 2008; Richards, 2015). Furthermore, recent studies
have provided evidence that restricted fertile blocks of the SCLM
may act as fertile source regions from where ore metals were
tapped by partial melting, fluxed melting, or by interaction with
ascending melts (Griffin et al., 2013; Groves and Santosh, 2015;
Groves et al., 2016; Tassara et al., 2017). However, the impact
and extent of silicate melt–SCLM interaction on the composition
and oxidation state of ascending melts that ultimately reach the
crust to form ore deposits, and the mechanisms of ore metals
extraction from the SCLM remain largely unexplored. Therefore,
understanding the redox evolution of magmas during their ascent
across the SCLM is crucial to unravel the mechanisms of metal
enrichment of ascending magmas.

Here, we examine the effects of melt–mantle interaction on
the f O2 and metal fertility by measuring directly the formal
oxidation state(s) of sulfur in magmatic apatite contained within
quenched silicate glass entrained in a peridotite xenolith from
Patagonia, Argentina, which represents a silicate melt that
ascended through the SCLM below the El Deseado Massif
auriferous province. By combining micro-X-ray absorption near-
edge structure (µ-XANES) spectroscopic analysis of sulfur in
apatite with petrological and mineralogical data, we show that
originally reduced silicate melts that infiltrated a relatively
oxidized SCLM interacted with the surrounding peridotite wall-
rock, triggering changes in sulfur speciation and solubility.
We link this process to the formation of gold-rich magmas
during ascent and interaction with the SCLM, providing new
insights into how mantle processes may govern the localization
of metallogenic provinces in the Earth’s crust.

SAMPLE BACKGROUND

This study focuses on a lherzolite xenolith, which represents
a portion of the mantle beneath the world-class El Deseado
Massif auriferous province (Figure 1). The Deseado Massif
hosts several Au–Ag epithermal deposits associated with calc-
alkaline rhyolites, basaltic andesites, and basalts from the late
magmatic stages of the Chon Aike Large Igneous Province (CA-
LIP) (Schalamuk et al., 1997). The CA-LIP formed during two
major periods between 180 and 155 Ma (Féraud et al., 1999).
The early Jurassic event was related to the thermal impact of
the Karoo plume head (∼180 Ma), whereas the Middle to Late
Jurassic events reflects the influence of active subduction on the

FIGURE 1 | Simplified map of southern Patagonia. The dashed line delimits
the Deseado Massif auriferous province. White circles indicate the location of
low-sulfidation epithermal gold and silver deposits. Red circles indicate the
location of other localities where mantle xenoliths have been reported.
Modified after Tassara et al. (2017).
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FIGURE 2 | Backscattered electron images of the interstitial glass veinlets in the studied lherzolite. Panels (A,B) show a general view of interstitial glass veinlets
crosscutting olivine (Ol) grains with their partially crystallized mineral assemblage. Panels (C,D) show the reaction rims formed along clinopyroxene (Cpx) (C) and
spinel (Sp) (D) when in contact with the glass veinlets. Panel (E) shows a detail of the mineral assemblages present in the interstitial glassy veinlets, including
oxidized Ni–Cu sulfides, armalcolite (Arm), and apatite (Ap) with euhedral morphologies.

western margin of Gondwana (∼155 Ma) (Pankhurst et al., 2000).
Mantle xenoliths from the SCLM beneath the Deseado Massif
were later extruded by extensive Neogene (∼3.5 Ma) back-arc
plateau volcanism (Rivalenti et al., 2004).

The studied peridotite is a relatively large (up to 25 cm)
protogranular anhydrous lherzolite equilibrated in the spinel
facies at temperatures of 1020–1150◦C at 13.6 Kb (Tassara
et al., 2017). The sample is characterized by the presence of
quenched interstitial glass distributed along grain boundaries of
the peridotite silicate matrix in the xenolith core forming an
interconnected network of veinlets (Supplementary Figure 1
and Figure 2). These veinlets contain a mineral assemblage that
includes armalcolite, apatite, ilmenite, K-feldspar, Au-bearing
sulfides, and native gold particles embedded within a glassy
matrix (Tassara et al., 2017; Figure 2). The interstitial silicate
glass has strong mineralogical and trace element compositional
differences with the host basalt, indicating that the origin of the
studied glass veinlets is not related to the infiltration of the host
basalt into the xenolith (Figure 3). Moreover, the interstitial glass
and associated minerals were interpreted as remnants of a Au-
bearing, Na-rich silica-undersaturated melt that infiltrated the

peridotite. This melt extracted Ni–Cu sulfide liquids from the
surrounding peridotite wall-rock and were physically entrained
and transported within the silicate melt through the mantle
(Bockrath et al., 2004; Ballhaus et al., 2006; Tassara et al., 2018).

ANALYTICAL METHODS

Electron Probe Microanalysis
The chemical composition of apatite, silicates, and oxides was
determined by using a CAMECA SX-100 electron microprobe
at the University of Michigan in Ann Arbor. An acceleration
voltage of 15 keV, a beam current of 10 nA, and a beam size of
2 µm were used for all analyses. Peak counting times of 20 s
were used for all elements, except 5 s for F and 60 s for S,
as this conditions are the best precautions to prevent electron
beam damage of apatite (e.g., halogen migration; Konecke et al.,
2019). During the analysis, both SiO2 and Al2O3 concentrations
were monitored for contribution of the surrounding glass
and mineral phases. Analyses indicating a contribution of the
glass were discarded.
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FIGURE 3 | Chondrite-normalized trace element composition of interstitial
silicate glasses in the Cerro Redondo peridotite xenolith. The trace element
data for the interstitial glass is from Tassara et al. (2018). The dark shade area
is the trace element data for the host basalt after from Gorring and Kay (2001)
and Schilling et al. (2005). The light gray shaded field is the composition of
alkaline metasomatic melts in the upper mantle after Coltorti et al. (2000),
Beccaluva et al. (2001), and Kovacs et al. (2007). Figure modified after
González-Jiménez et al. (2019).

Sulfur X-Ray Absorption Near Edge
Structure Spectroscopy
In situ sulfur X-ray Absorption Near Edge Structure Spectroscopy
(S-XANES) measurements at the S K-edge were conducted
at the GSECARS 13-ID-E beamline, Advanced Photon Source
(APS), Argonne National Laboratory, IL. The beamline can cover
an energy range of 2.4–28 keV and uses a high-flux beam
(≥4.5 × 1010 photons/s/100 mA/mm2) that produces a high
spatial resolution micro-focused 2 × 2 µm (µ-XANES) beam by
using Kirkpatrick–Baez (KB) focusing mirrors. The energy of the
Si (111) channel-cut monochromator was calibrated to the 2481.8
(±0.2) eV white line of the spectrum for clear double-sided
adhesive tape. Spectra were collected at ambient temperature and
pressure and covered a range of energy from 2450 to 2550 eV,
with a step size of 0.1–0.3 eV at the S K-edge (2464–2484 eV) and
1 eV for the pre- and post-edge regions (0.5–3 s scan durations
per energy step). Step-scan durations of 1–3 s per energy step
were used to achieve higher S X-ray counts required for high-
quality spectra, especially in low S-bearing apatite. The analyses
were performed directly on rock thick sections and the spectra
was collected in fluorescence mode. X-ray fluorescence maps
were performed in advance in order to locate the apatite crystals.
Previous studies have confirmed that the S oxidation state in
apatite remains constant when exposed to the synchrotron beam
for over 1 h, demonstrating that beam damage is not an issue
(Konecke et al., 2017, 2019).

REDOX STATE DETERMINATION

The f O2 conditions of the oxide-silicate assemblage in the host
peridotite were calculated using the methods described by Wood
et al. (1990) for olivine–orthopyroxene–spinel equilibrium and at
13.6 Kb and 1020◦C, yielding 1FMQ values between 0 and +0.8

FIGURE 4 | Pseudobrookite group diagram showing armalcolite end
members. Modified from Grégoire et al. (2000). Pseudobrookite group
diagram composition after Bowles (1988). ANV, anosovite; ARM, armalcolite;
PSB, pseudobrookite. Open circles: armalcolite and pseudobrookite from
Cancarix, Spain (Contini et al., 1993). Crosses: Armalcolite from Lebombo
picrites (Cawthorn and Biggar, 1993). Polygons: Kimberlitic armalcolite from
Jagersfontein (Haggerty, 1987). White diamonds: armalcolite from this study.
The black arrow represents the compositional evolution of armalcolite at
progressively higher fO2 after Medvedev (1996). End member calculation and
classification according to Bowles (1988).

(Supplementary Tables 1, 2), consistent with redox constraints
for most SCLM peridotites reported in the literature (Ballhaus,
1993; Richards, 2015).

The oxidation state of the infiltrating silicate melt was
determined, on the other hand, by using two independent
approaches based on the composition of armalcolite and
apatite, respectively. Terrestrial occurrences of armalcolite
[(Fe,Mg)Ti2O5] are exclusively associated with metasomatic
melts in the upper mantle and high-Ti primitive lavas (Haggerty,
1987; Bowles, 1988; Contini et al., 1993; Grégoire et al., 2000).
Compositional analysis of armalcolite shows that it contains a
high concentration of Cr (1.73 and 2.16 wt.%) and is among the
most MgO-enriched compositions reported in both lunar and
terrestrial occurrences (Supplementary Table 3). Stoichiometric
calculations indicate that armalcolite has near zero trivalent
Fe and Ti concentrations (Supplementary Table 4). Similar
compositions were reported for Cr-bearing armalcolite found in
the Kerguelen island mantle xenoliths (Bowles, 1988; Haggerty,
1991; Grégoire et al., 2000; Figure 4). In an attempt to
constrain the oxidation state of lunar basalts, Friel et al. (1977)
performed experimental studies on the stability of synthetic
armalcolite as a function of f O2 at 1200◦C and 0.001 Kb.
This experiment and observations in natural samples (Grégoire
et al., 2000) demonstrated that Cr-rich and near-zero Fe3+
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FIGURE 5 | Sulfur µ-XANES spectra of the studied apatite. Averaged µ-XANES spectra showing the oxidation state of sulfur in apatite crystallized from a silicate
melt that percolated through the subcontinental lithospheric mantle in southern Patagonia, beneath the Deseado Massif.

variety of armalcolite forms only under reducing conditions
(f O2 between 10−12.5 and 10−13.5 Kb), i.e., 1FMQ ≈ −2.2
to −1.20 (cf. Figure 4 in Friel et al., 1977). In addition, these
authors showed that at even lower f O2 conditions (between
10−15.2 and 10−15.8 Kb), armalcolite breaks down to form Mg-
rich armalcolite plus ilmenite. Based on experimental data, we
constrained the oxidation conditions of the infiltrating silicate
melt at the time of armalcolite crystallization in the mantle at
1FMQ≈−2.2 to−1.2, whereas the presence of ilmenite suggests
1FMQ values closer to −2.2 (Friel et al., 1977). Importantly, it
has been documented that whereas armalcolite is stable as a single
phase at pressures up to 10 Kb, armalcolite + ilmenite + rutile
assemblages form at pressures between 10 and 14 Kb. Thus,
the fact that armalcolite + ilmenite is present in the studied
veinlet indicates that either the armalcolite suffered slow cooling
allowing it to partially transform to ilmenite (Lindsley et al.,
1974), or that the crystallization of armalcolite suffered occurred
at >10 Kb, where both phases are stable (Friel et al., 1977). Either
case indicates that armalcolite did not simply crystallized at low
pressure during rapid cooling of the sample but rather formed at
depth and suffered at least some slow cooling before the xenolith
was brought to the surface.

Apatite [Ca5(PO4)3(F,Cl,OH)] also occurs embedded within
the interstitial silicate glass, commonly forming isolated clusters
of crystals of up to ∼8 µm in size (Figure 2). The apatite
crystals are euhedral and show typical hexagonal and acicular
shapes, indicating that it crystallized from the surrounding melt
upon rapid quenching (Piccoli and Candela, 2002), possibly

during the xenolith eruption (Tassara et al., 2017). Electron probe
microanalysis (EPMA) revealed that apatite corresponds to the
F-rich endmember (Supplementary Table 5), which suggests
a late crystallization from the silicate melt associated with
increasing differentiation (Nash, 1984). Sulfur concentrations in
the analyzed apatite are between 40 and 170 µg/g with a few
grains showing concentrations below detection limits (∼30 µg/g)
(Supplementary Table 5). The sulfur µ-XANES spectra of the
studied apatite grains revealed two dominant peaks at ∼2469.7
(sulfide) and ∼2481.8 eV (sulfate), indicating that both species
were incorporated within the apatite structure (Figure 5). The
sulfite (S4+) peak (∼2478 eV) very likely is present in all spectra
but cannot be resolved due to the overlap of the broad sulfide
peak. To alleviate this, the peak integration of the broad sulfide
peak was used to determine the S6+/Stot area ratio calculation,
identical to the fitting methods developed and implemented by
Konecke et al. (2017, 2019). The integrated S6+/Stotal peak area
ratios were determined following the methodology of Konecke
et al. (2017) and range between 0.28 and 0.48 (Figure 5). In order
to reduce crystal orientation effects on the relative integrated
area of the different peaks of the µ-XANES spectra, several
apatite spectra were collected, normalized (e.g., baseline removal
and intensity normalization), and then merged (Konecke et al.,
2017) to obtain an average spectrum representative of the bulk
sulfur oxidation state of the studied apatite grains. Also, several
apatite grains with different morphologies, including elongated
(approximately parallel to the c-axis) and euhedral hexagonal
apatite (approximately perpendicular to c-axis) were analyzed
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and no significant variation in the S6+/Stot ratios were observed.
The averaged integrated S6+/Stotal peak area can be used to
estimate the f O2 of the infiltrating silicate melt from which
apatite crystallized. Experiments performed by Konecke et al.
(2017, 2019) showed that apatite formed at 1FMQ = 0 has
a S6+/Stotal ratio of ∼0.14, whereas apatite that crystallized at
1FMQ ≈ +1.2 is characterized by a S6+/Stotal ratio of ∼0.95.
This implies that apatite undergoes a pronounced shift from
sulfide- to sulfate-dominated species with changing oxidation
conditions, similarly to silicate melts (Jugo et al., 2010). The
integrated S6+/Stotal ratio of the individual studied apatite ranges
from∼0.28 to∼0.48, and the integrated S6+/Stotal ratio resulting
from merging all spectra is ∼0.35 (Figure 5). The latter values
indicate that the oxidation state of the infiltrating silicate melt
at the time of apatite crystallization was 0 < 1FMQ < +1.2.
Given that the S6+/Stotal ratio and log (f O2) follow a near linear
trend within this range (Konecke et al., 2019), we infer that the
final oxidation state of the silicate melt at apatite formation was
between 1FMQ +0.3 to +0.4 [±0.5, 2σ], which is within the
f O2 estimated for the peridotite wall-rock. Considering that an

increase in pressure shifts the stability field of sulfide toward more
oxidizing conditions (Matjuschkin et al., 2016) and inferring that
apatite follows a similar trend, we conclude that a 1FMQ+0.3 to
+0.4 represents a minimum f O2 value for the silicate melt.

DISCUSSION

The interstitial network of glass veinlets in the peridotite xenolith
represents a Na-rich silica undersaturated melt that percolated
through the SCLM and quenched during the rapid eruption of the
xenolith (Tassara et al., 2018). Although the potential re-heating
of the xenolith during entrapment in the host basalt could alter
the original nature of the entrained veinlets, we observe no signs
of perturbation in the integrity of the sample. Sharp contacts
between the xenolith and host basalt, as well as the relatively large
size of the xenolith indicate that ascent was very fast, precluding
the possibility of ascending during sufficient time to transfer
significant heat to the internal parts of the xenolith (O’Reilly
and Griffin, 2010; and references therein). Based on our data, we

FIGURE 6 | Mechanisms leading to oxidation of percolating melts and ore metals incorporation. (A) The reduced silicate melt enters the subcontinental lithospheric
mantle, entraining immiscible sulfide liquids. A redox gradient is generated between the reduced melt and the more oxidized peridotite wall-rock. (B) The silicate melt
starts to re-equilibrate with the surrounding peridotite wall-rock. (C) Increasing oxygen fugacity triggers changes in the sulfur solubility promoting metal sulfide
breakdown and release of sulfide, sulfate, and Au into the percolating silicate melt. (D) Quenching upon rapid ascent induced apatite crystallization, which records a
snapshot of the melt-SCLM interaction process.
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propose that the mineral assemblage associated with the glassy
vein (armalcolite and apatite) records two different oxidation
states of the percolating silicate melt, and where armalcolite
formed under highly reducing conditions (1FMQ−2.2 to−1.2),
followed by the crystallization of apatite under more oxidizing
conditions (1FMQ 0 to+1.2).

Melt Oxidation During Interaction With
Surrounding Mantle
The reduced armalcolite-bearing silicate melt (1FMQ −2.2 to
−1.2) infiltrated a relatively more oxidized peridotite (1FMQ
0 to +0.8), producing a large redox gradient, i.e., a 1f O2 of
near 3 log units between these two components (Figure 6A).
The final redox conditions after oxidation of the reduced silicate
melt and reduction of the relatively oxidized peridotite will
depend on the mass balance between the more reduced and
more oxidized components (Evans and Tomkins, 2011). Apatite
crystallized from the surrounding silicate melt after the melt–
peridotite interaction started, containing both sulfide and sulfate
as evidenced by our µ-XANES data (Figure 5). The presence of
sulfate in apatite requires the reaction between two components,
i.e., a highly reduced melt with a S6+/Stotal ∼0 and low sulfur
content (Jugo et al., 2010) that reacted with a more oxidized and
sulfide-bearing peridotite (1FMQ 0 to+0.8).

In the SCLM, the oxidation state is governed by minerals that
have a high content of Fe3+ such as spinel and clinopyroxene
(Wood et al., 1990). These two phases are the first minerals to
react with the melt when the redox conditions are disturbed,
as has been reported during the mixing process between
two compositionally distinct magmas (Fiege et al., 2017).
Clinopyroxene and spinel from the studied peridotite show
reaction rims when in contact with the reduced infiltrating
silicate melt (Figures 2B,C) indicating that Fe2+

↔ Fe3+

exchange between the peridotite wall-rock and the infiltrating
silicate melt could have occurred, explaining the oxidation of
the melt (Cooper et al., 1996; Figure 6B). Other than Fe, sulfur
also has a large oxidation potential (Evans and Tomkins, 2011),
and an increase in the oxidation state of the melt after melt–
peridotite interaction would promote an increase in the sulfur
solubility of the infiltrating silicate melt (Jugo et al., 2005b).
Thus, at higher redox and sulfur solubility conditions (Jugo et al.,
2005b), the sulfide liquids entrained in the percolating silicate
melt will partially oxidize, breaking down and dissolving in the
surrounding melt (Figure 6C). Decreasing pressure during ascent
could potentially boost the breakdown of the sulfide phases, as
the solubility of S in the melt will increase (Mavrogenes and
O’Neill, 1999). However, if only this had been the mechanism of
sulfide breakdown, no sulfate would be observed as the system
would remain reduced (Matjuschkin et al., 2016). Therefore, an
oxidation mechanism is still needed to account for the sulfate in
the system. The apatite crystallized from the melt after the melt–
peridotite interaction will incorporate both sulfide and sulfate in
varying proportions, according to the S6+/Stotal ratio of the melt;
therefore, apatite will record the oxidation state of the silicate
melt during interaction with the surrounding peridotite wall-rock
(Konecke et al., 2017; Figures 5, 6D).

FIGURE 7 | Redox evolution of the silicate melt and the effect of redox
gradients on Au solubility. Plot of S6+/Stotal vs. oxygen fugacity, expressed log
units relative to the fayalite–magnetite–quartz mineral buffer (1FMQ). The
diagram shows the initial and final redox conditions of the originally reduced
silicate melt that interacts with the more oxidized peridotite wall-rock (1020◦C
and 13.6 Kb). The empirical approach for the determined fO2 conditions of
the initial and final silicate melt is from experiments performed at 1200◦C and
0.001 to 14 Kb (armalcolite), and 1000◦C 3 Kb (apatite). The green shaded
area illustrates the changes in S6+/Stot in silicate melts with pressure after
Jugo et al. (2010) and Matjuschkin et al. (2016). The red line corresponds to
Au solubility in S-bearing basaltic glasses at 1050◦C and 2 Kb (Botcharnikov
et al., 2011). The redox gradient generated between the melt and the
peridotite wall-rock, defined as 1fO2, promotes oxidation of the infiltrating
melt leading to optimal Au solubility conditions.

Scavenging Sulfur and Ore Metals From
the Lithospheric Mantle
The process described above explains the oxidation of silicate
melts that ascend through the SCLM with the concomitant
destabilization of ore metal-bearing sulfides (or sulfide melts)
and incorporation of sulfur. Hence, sulfide breakdown will not
only release sulfur but also its contained ore metals (Lorand and
Luguet, 2016), such as Au (Figure 6D), which under certain
circumstances could lead to metal enrichment in the percolating
silicate melts. The solubility of Au in sulfur-bearing silicate melts
is maximized when sulfur is dissolved as both sulfide and sulfate
species (Cooper et al., 1996) and when the sulfide concentration
is near the sulfide-saturated threshold (Botcharnikov et al., 2011;
Li and Audétat, 2012; Zajacz et al., 2012; Jégo et al., 2016).
Figure 7 shows that the estimated f O2 of the silicate melt
after reacting with the peridotite wall-rock is between 1FMQ
0 and +1.2. Sulfur µ-XANES in apatite indicates that the
S6+/Stotal ratio is ∼0.35 and the presence of sulfide liquids
within this silicate melt indicates that the melt was once sulfide
saturated. These redox conditions are in good agreement with
those that maximize Au solubility of sulfur-bearing basaltic
melts, determined experimentally by Botcharnikov et al. (2011)
at 1050◦C and 2 Kb (Figure 7), meaning that the highest Au
solubility was achieved during redox re-equilibration within the
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SCLM. In addition, the mineral assemblage associated with the
studied melt contains native gold particles included within the
sulfides as well as embedded within the quenched glass (Tassara
et al., 2017). The native gold micro-particles in the sulfides have
euhedral and hexagonal forms (Tassara et al., 2017) and likely
crystallized from the sulfide liquids during desulfurization, after
oxidation of the surrounding silicate melt (Tassara et al., 2018).
Continued oxidation and desulfurization would result in the
release of these Au micro-particles into the silicate melt. The
Au micro-particles embedded within the glass have irregular
shapes (Tassara et al., 2017), pointing to partial dissolution in the
surrounding melt. This is in good agreement with Au solubility
experiments (Botcharnikov et al., 2011; Jégo et al., 2016) and
indicates that the studied silicate melt had an enhanced capability
for transporting significant amounts of Au (Figure 7).

In summary, mantle-derived and metal-rich sulfides entrained
within reduced percolating silicate melts (e.g., Bockrath et al.,
2004; Ballhaus et al., 2006; Tassara et al., 2018) may release
significant amounts of sulfur and Au due to the transient increase
in f O2 caused by melt–peridotite interaction during melt ascent
across the SCLM (Figure 6), acting as an efficient mechanism
for sourcing metals from the deep lithosphere, and resulting
in Au enrichment of ascending silicate melts by almost one
order of magnitude.

CONCLUDING REMARKS

The role of melt–peridotite interactions is being increasingly
recognized in the literature as a key factor controlling the
f O2 of silicate melts percolating through the mantle in various
tectonic settings (e.g., Tollan and Hermann, 2019). Our data
from the El Deseado Massif auriferous province in southern
Patagonia are in agreement with this point of view. Moreover,
we suggest that changes in the redox state of ascending magmas
during ascent throughout the SCLM can boost the potential for
efficient extraction of Au and other metals from selected mantle
regions, increasing their ore-fertility. Sillitoe (2008) emphasized
that the recurrent generation of major gold deposits and belts in
North and South America remains uncertain. Among the factors
explaining the occurrence of metallogenic provinces dominated
by one or more ore metals, widely contemplated possibilities
include heterogeneously distributed metal preconcentration,
favorable redox conditions, or other parameters somewhere
above the subducted slab, between the mantle wedge and upper
crust (Sillitoe, 2008). We argue that the formation of restricted
blocks of crust highly endowed with gold deposits requires,
in addition to hydrothermal processes in the upper crust,
the efficient extraction of Au from refertilized and oxidized
domains of SCLM (Rielli et al., 2017). Evidence presented here
suggests that redox gradients between ascending magmas and
the surrounding mantle can trigger the destabilization of mantle
sulfides and sulfide melts, resulting in the release of their Au cargo
into the silicate melt fraction. Our model proposes an efficient

mechanism for the transfer of Au and associated metals from
enriched portions of the SCLM to ascending magmas, helping
to improve our understanding of metallogenic processes that
operate on a lithospheric scale.
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