Mostrar el registro sencillo del ítem

dc.contributor.authorCamacho Páez, José 
dc.contributor.authorTheron, Roberto
dc.contributor.authorGarcía Giménez, José M.
dc.contributor.authorMacía Fernández, Gabriel 
dc.contributor.authorGarcía Teodoro, Pedro 
dc.date.accessioned2020-01-23T07:44:51Z
dc.date.available2020-01-23T07:44:51Z
dc.date.issued2019-08-13
dc.identifier.citationCamacho, J., Therón, R., García-Giménez, J. M., Maciá-Fernández, G., & García-Teodoro, P. (2019). Group-Wise Principal Component Analysis for Exploratory Intrusion Detection. IEEE Access, 7, 113081-113093.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/59031
dc.description.abstractIntrusion detection is a relevant layer of cybersecurity to prevent hacking and illegal activities from happening on the assets of corporations. Anomaly-based Intrusion Detection Systems perform an unsupervised analysis on data collected from the network and end systems, in order to identify singular events. While this approach may produce many false alarms, it is also capable of identifying new (zeroday) security threats. In this context, the use of multivariate approaches such as Principal Component Analysis (PCA) provided promising results in the past. PCA can be used in exploratory mode or in learning mode. Here, we propose an exploratory intrusion detection that replaces PCA with Group-wise PCA (GPCA), a recently proposed data analysis technique with additional exploratory characteristics. A main advantage of GPCA over PCA is that the former yields simple models, easy to understand by security professionals not trained in multivariate tools. Besides, the workflow in the intrusion detection with GPCA is more coherent with dominant strategies in intrusion detection. We illustrate the application of GPCA in two case studies.es_ES
dc.description.sponsorshipThis work was supported in part by the Spanish Government-MINECO (Ministerio de Economía y Competitividad), using the Fondo Europeo de Desarrollo Regional (FEDER), under Projects TIN2014-60346-R and Project TIN2017-83494-R.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectPrincipal component analysises_ES
dc.subjectGroup-wise Principal Component Analysises_ES
dc.subjectAnomaly detectiones_ES
dc.subjectIntrusion Detectiones_ES
dc.titleGroup-Wise Principal Component Analysis for Exploratory Intrusion Detectiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2019.2935154


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España