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ABSTRACT Intrusion detection is a relevant layer of cybersecurity to prevent hacking and illegal activities
from happening on the assets of corporations. Anomaly-based Intrusion Detection Systems perform an
unsupervised analysis on data collected from the network and end systems, in order to identify singular
events. While this approach may produce many false alarms, it is also capable of identifying new (zero-
day) security threats. In this context, the use of multivariate approaches such as Principal Component
Analysis (PCA) provided promising results in the past. PCA can be used in exploratory mode or in learning
mode. Here, we propose an exploratory intrusion detection that replaces PCA with Group-wise PCA
(GPCA), a recently proposed data analysis technique with additional exploratory characteristics. A main
advantage of GPCA over PCA is that the former yields simple models, easy to understand by security
professionals not trained in multivariate tools. Besides, the workflow in the intrusion detection with GPCA
is more coherent with dominant strategies in intrusion detection. We illustrate the application of GPCA in
two case studies.

INDEX TERMS Principal component analysis, group-wise principal component analysis, anomaly
detection, intrusion detection.

I. INTRODUCTION
The number of cybersecurity incidents, where strategic assets
of corporations get exposed to cybercrime organisations, has
experienced a boost in the last five years [1]. As a result, cor-
porations are devoting more economic and human resources
for incident detection [2]. Due to the shortage of specialised
professionals, there is a need for efficient tools and mecha-
nisms to aid in the detection, triaging and analysis of inci-
dents. As part of this set of tools, anomaly-based Intrusion
Detection Systems (IDS) [3] are paramount to unveil new
attack strategies.

The use of Principal Component Analysis (PCA) for intru-
sion detection was proposed more than a decade ago [4], [5].
PCA yields a data factorisation based on the criterion of
maximising variance [6], [7]. This factorisation makes it pos-
sible to perform anomaly detection in a complex data set,
with almost any number of features. This capability is of
utmost importance for intrusion detection because a high
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number of features from multiple and variate data sources
can be combined in the IDS [8]. An additional benefit in
the use of PCA is that detected anomalies can be interpreted
using the model [9], [10], reducing the time between detec-
tion and response [11], [12]. This is typically referred to as
the diagnosis step.

PCA can be used either in exploratory mode or in learning
mode. In the exploratory mode [13], PCA is applied to a data
block in order to find anomalies in that block. In the learning
mode [14], PCA is calibrated from a data block to build a
normality model, and then applied to a different block with
new, incoming data, to find the anomalous events. While both
approaches present different characteristics, they share amain
advantage over black box models (e.g. neural networks or
kernel methods): PCA is an interpretable model, and besides
detecting anomalies, it can be useful to visualise and under-
stand the patterns in the data collected from a network [15].

Unfortunately, the PCA factorisation is often challenging
to interpret in highly dimensional data. This difficulty may
hamper the practical application of PCA in software for
intrusion detection. To overcome this limitation, PCA can be
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modified to a so-called simple model structure, improving
model interpretability. This improvement can be achieved by
means of rotation [6] or sparse methods like sparse principal
component analysis (SPCA) [16], [17]. These approaches
have been extensively used to simplify the interpretation of
PCA models in several areas of knowledge, in particular in
biological sciences [18]. However, they are not easy to apply
in practice, requiring a certain level of expertise in their use.

In a recent paper, Camacho et al. proposed the Group-wise
PCA (GPCA) algorithm [19]. GPCA follows an alternative
approach than sparse approaches and rotation techniques to
yield a simple model structure. With GPCA, we can identify
anomalies in the data stream following a straightforward
workflow, which is simple to use and understand by security
professionals not trained in multivariate tools. This has the
following additional advantages over the use of PCA:
i. Domain knowledge can be included in the workflow

[15], as an effective means to reduce false positives,
a main problem of IDSs.

ii. Sustained security problems, difficult to find with PCA,
can be unveiled with GPCA.

In this paper, we propose an exploratory intrusion detection
approach based on GPCA. The paper is organised as follows.
Section II presents the related work. Section III introduces
the use of PCA in exploratory intrusion detection. Section IV
presents GPCA. Section V and VI compare the performance
of PCA and GPCA in two case studies. Section VII discusses
the results and Section VIII brings conclusions.

II. RELATED WORK
IDS paradigms rely on data analysis to determine the occur-
rence of potentially harmful activities. For that, machine and
network events are usually considered as inputs to extract
behavioural patterns [20]. However, the amount and variety
of data to be processed becomes almost unmanageable in
current networked systems, due to their complexity and high
speed. Authors in [21] and [22] present the overall prob-
lem from different technical perspectives: feature selection,
data reduction, information fusion and processing techniques.
Here, we will focus on the data reduction approaches [23].

Rehman et al. present a review of methods used for data
reduction in [24]. Meng et al. [25] propose to reduce the
data volume for wireless intrusion detection in IoT environ-
ments by sampling traffic, either systematically or at random.
Authors in [26] propose a framework in which two feature
reduction algorithms, Canonical Correlation Analysis (CCA)
and Linear Discriminant Analysis (LDA), are used for reduc-
ing the less important features for fast, efficient and accurate
detection of intrusions in netflow records using Spark.

Principal Component Analysis (PCA) is a processing
technique recurrently used in the literature to reduce
dimensionality [27], [28]. The most referred work on PCA
intrusion detection is that of Lakhina et al. [13], where the
authors propose the use of PCA over link counts of traf-
fic for detecting network-wide anomalies. For this, a PCA
model is fitted from the complete traffic capture, following

the exploratory mode, and anomalies are searched for in
the residuals of this model, using the so-called Q-statistic
or SPE. The underneath assumption is that the structural
correlation captured by PCA represents the normal, free of
anomalies, traffic behaviour. This assumption in fact leads
to the main shortcoming of the approach: anomalies of large
magnitude, and therefore of large variance, can pollute the
normality model. This situation, in turn, makes the approach
very sensitive to calibration settings [29].

In another work, Lakhina et al. [30] also explore the com-
bination of counts of bytes, counts of packets and counts of
IP flows as the input to the monitoring system. They state that
for monitoringmore diverse data, the model subspace should
also be inspected for anomalies. For that, they suggest the use
of the Hotellin’s T 2 statistic, also referred to as the D-statistic
when used with PCA. Thus, the detection is based on both the
Q-statistic and the D-statistic, following standard practices
in PCA anomaly detection in the process industry [31], [32].
Camacho et al. [8] follow this approach and extend the data
parameterisation to combine traffic data with any source of
security data, like traditional IDS logs or firewall logs.

Some contributions on multivariate analysis for security
anomaly detection have opted for combining PCA with other
detection schemes. Thus, Aiello et al. [33] combine PCA
withmutual information for profilingDNS tunnelling attacks.
Fernandes et al. [34] combine PCA with a modified version
of Dynamic Time Warping for network anomaly detection.
They also propose an alternative approach based on Ant
Colony Optimization. Jiang et al. [35] apply PCA over a
wavelet transform of the network traffic for network-wide
anomaly detection. Chen et al. [36] use a similar approach
with Multiscale PCA. Peng et al. propose in [37] a clustering
method based on Mini Batch K-means with PCA (PMBKM).
More recently, authors in [38] combine the approaches of
information gain (IG) and PCA with an ensemble classifier
based on a support vector machine (SVM), Instance-based
learning algorithms (IBK), and a multilayer perceptron
(MLP).

Authors in [14] introduce the Multivariate Statistical
Network Monitoring (MSNM) approach, where the PCA
model is used in learning mode, rather than in the exploratory
mode originally proposed by Lakhina. PCA is first employed
to estimate a normality model for both structural and resid-
ual sub-spaces in the calibration data, and this model is
afterwards contrasted with future data for real-time anomaly
detection. In the first step, calibration data needs to pass
through a cleaning process where the D and Q statistics are
employed to explore data for outliers. The identification and
extraction of outliers are typically performed on an iterative
basis, in which the data are visualised, outliers are isolated
and the model re-calibrated. This is often a challenging
process, which may lead to anomaly detection systems too
sensitive or too insensitive to anomalies.

In a recent paper [15], we proposed a new tool for intru-
sion detection where we combined the PCA exploratory
approach with visual analytics and GPCA. In it, GPCA takes
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a secondary role, and its potential contribution to the intru-
sion detection paradigm was not determined. In this paper,
we extend that work by defining a clear workflow for the
application of GPCA in intrusion detection, study how the
analyst can use domain knowledge in the analysis, making it
more efficient, and evaluate the performance of GPCA in two
case studies.

III. PCA FOR EXPLORATORY INTRUSION DETECTION
PCA applies to data sets with M features corresponding
to N observations, which can be arranged in a matrix X
of M columns and N rows. For intrusion detection, fea-
tures (columns) correspond to quantitative values obtained
from any security-related source of data, including traffic and
logs of applications and systems. Typically, the observations
(rows) correspond to consecutive time intervals, which is
suitable for real-time monitoring.

PCA aims to find the subspace of maximum variance in
the M -dimensional feature space. The original features are
linearly transformed into the Principal Components (PCs),
using the eigenvectors ofXT

·X, typically for mean centredX
and sometimes also after auto-scaling (normalising to unit
variance). PCA follows the expression:

X = T · Pt + E, (1)

where T is the N × A score matrix, for A the number of PCs,
P is theM × A loading matrix and E is the N ×M matrix of
residuals.

In their original publication, Lakhina et al. [13] propose
to monitor only the residual subspace of PCA. For that, they
compute the Q-statistic (Q-st) or SPE:

Qc = ec etc (2)

where ec is the residual vector in the c-th row of E in eq. (1).
To identify anomalies, Lakhina et al. use the expression pro-
posed by Jackson and Mudholkar [39] for the Upper Control
Limit (UCL) at significance level α:

UCL(Q)α = θ1 ·

 zα
√
2θ2h20
θ1

+ 1+
θ2h0(h0 − 1)

θ21


1
h0

(3)

where θn =
∑rank(X)

a=A+1 (λa)
n, with rank(X) the rank of the

matrix of dataX and λa the eigenvalues of matrix 1
N−1 ·E

T
·E;

h0 = 1 − 2θ1θ3
3θ22

; and zα is the 100 · (1 − α)% standardised

normal percentile. The most common approach is to set α to
0.01, in order to define a 99% control limit. All observations
with a value of Qc above the control limit are signalled as
anomalies.

As already discussed, the same authors propose later [30]
the combination of the Q-statistic with the D-statistic (D-st):

Dc = tc3−1t tc (4)

where tc is the score vector in the c-th row of T in eq. (1) and
3 = 1

N−1 · T
t
· T. They also define the corresponding UCL

at significance level α following [7]:

UCL(D)α =
A(N 2

− 1)
N (N − A)

F(A,(N−A)),α (5)

with F(A,(N−A)),α the F-distribution with A and N −A degrees
of freedom at significant level α.

Figure 1(a) illustrates the intrusion detection approach
based on PCA in exploratory mode, using a scatter plot of
the D-st versus the Q-st. There is only one block of obser-
vations, which are used to calibrate the PCA model, and to
compute the statistics and the corresponding control limits.
Then the same observations are contrasted to those limits in
the monitoring chart in order to identify anomalies. In the
figure, we can identify several anomalies, which exceed the
UCL either in the D-st (observations 110, 44, and to a lesser
extent 109) and/or the Q-s (observations 108, 106, and to a
lesser extent 107).

FIGURE 1. Illustration of PCA detection in (a) exploratory and (b) learning
mode.

In learning mode, a new block of observations is projected
on the PCA model, and new Q-st and D-st are computed.
This is illustrated in Figure 1(b), where we use one block
of observations (red dots) for the calibration of model and
control limits, and then the model is used to monitor new
observations, which can be classified as normal (green dots)
or anomalous (blue dots).
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To combine the D-st and the Q-st into a single triaging
score, [11] defines the Tscore according to the following
equation:

Tc = α · Dc/UCLD.99 + (1− α) · Qc/UCL
Q
.99 (6)

Once an anomaly is identified, either with the D-st and Q-st
or the Tscore, the PCA model can also be used to provide a
first diagnosis of the problem, by identifying those features
related to the anomalous value of an observation. There are
several approaches for that, see [10] for a review. The discus-
sion on the performance of different diagnosis methods is out
of the scope of this paper. The interested reader is referred
to [40].

The diagnosis is illustrated in Figure 2 for one of the obser-
vations in blue color in Figure 1(b). The particular method
used is named oMEDA [41], and noted as d2A forA the number
of PCs. It is a bar plot of the features, built to compare two
groups of observations. Each bar represents the contribution
of the feature to the difference between both groups. A pos-
itive bar implies that the first group of observations presents
a higher value in the corresponding feature than the second
group. A negative bar reflects the opposite. A bar close to
zero means that both groups of observations have a similar
value in that feature. From the plot, we can conclude that the
anomalous observation under analysis (first group) showed
larger values than normal observations (second group) in the
two first features.

FIGURE 2. Illustration of PCA diagnosis.

IV. GPCA
GPCA [19] is a recent sparse PCA variant. Every component
contains non-zero loadings for a single group of correlated
features. GPCA starts with the identification of a set of K
(possibly overlapping) groups of correlated features obtained
from a map M, with elements mi,j ∈ [−1, 1] containing
the strength of the relationship between features i and j.
An example of this map is the correlation matrix of X.
In the original formulation of GPCA, the MEDA approach
(Missing-data for Exploratory Data analysis) [42] was imple-
mented to define M. MEDA uses a missing data strategy
to estimate the correlation between any two variables. This

approach has been found to be effective in filtering out noise
when estimating correlations.

Once the groups have been defined, the GPCA algorithm
first computes K candidate loading vectors, one per each of
the groups of features. From these, only the loading vector
with the largest variance is retained, and residuals are com-
puted. The algorithm iterates until a set of sparse components
is extracted.

Figure 3 illustrates the MEDA plot for a simulated data
set. In the plot, the data features cluster in three, clear groups.
Colours in the plot reflect the level and direction (positive,
red, or negative, blue) of the correlation between features. The
Group Identification Algorithm (GIA) was defined in [19] to
automatically identify groups in a MEDA plot.

FIGURE 3. Illustration of the MEDA map.

Once the groups are identified, they can be visualised using
colours with contextual (e.g., security-related) information.
For instance, we can show the level of security relevance of
the group of features. See Figure 4 for an illustration of this
approach. From this figure, the security analyst can focus on
those feature groups with more security-relevant information.
Using GPCA, we compute the temporal evolution of the
observations corresponding to a feature-group of interest.
See Figure 5 for an illustration, where we can identify anoma-
lies in time (those spikes surpassing the control limits).

FIGURE 4. Illustration of GIA grouping with contextual information.

GPCA has two features that make it especially useful for
forensic analysis and interpretation. On the first hand, GPCA
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FIGURE 5. Illustration of scores of a group of features.

performs a separation of sources very similar to Independent
Component Analysis (ICA) and other blind source separation
techniques. Thus, the traffic is decoupled in different types of
traffic, and the analyst can easily understand how these evolve
in time. On the other hand, unlike ICA, GPCA is sparse,
which means that this separation is linked to a reduced subset
of features, simplifying interpretation.

When detecting intrusions with GPCA, we go from fea-
tures to the observations, that is, we identify anomalies in the
(groups of) features, and from them go to the time evolution
of such anomalies. This workflow is complementary to that
of PCA, and presents the advantages commented in the intro-
duction: sustained security-related trends in the data can be
unveiled, and domain knowledge can be used to reduce false
positives.

V. CASE STUDY I: VAST CHALLENGE
This first case of study serves to illustrate the workflow for
exploratory intrusion detection using GPCA and the main
differences with the PCA approach.

A. EXPERIMENTAL FRAMEWORK
The data comes from theVAST 2012 2ndmini-challenge [43]
and contains information captured in a corporate network
during a timeframe of two days. The network infrastructure
is comprised of approximately 1000 servers and 4000 work-
stations and is running 24 hours a day. Most of the com-
pany operations are carried out inside the network. However,
some financial transactions have to go to data centres out-
side the network. During the capture, the users experienced
several technical issues in their systems. Some staff mem-
bers informed that their workstations were infected by spy-
ware and that suspicious messages from a previously unseen
antivirus software started popping up on their computers.
From the official solution of the challenge, we know that
a botnet compromised the network, causing the aforemen-
tioned performance problems and the emergence of the
spyware.

The VAST2012 data set contains two semi-structured data
sources: logs from an Intrusion Detection System (IDS)
and logs from a Cisco ASA firewall (FW). A total
of 23,711,341 data records from the FW and 35,948 records
from the IDS are presented in CSV and in raw format.
We parsed the raw data into a total of 265 features, 122 for the
FW and 143 for the IDS. Tables 1 and 2 summarise the list
of features, as well as the kind of information they contain.
The features are computed for 1 minute intervals, yielding a

TABLE 1. Firewall feature overview.

TABLE 2. IDS feature overview.

FIGURE 6. Tscore values for PCA anomaly detection.

2345× 265 matrix of parsed data. More details can be found
in [12]. After auto-scaling, weights from 1 to 10 are assigned
to each feature according to their security relevance.

Reproducibility of the results in this case study is possible
by downloading the virtual machine at https://nesg.ugr.es/
veritas/index.php/mbda

B. EXPLORATORY INTRUSION DETECTION
The results of applying the PCA methodology in this case
study are summarised in Table 3. Figure 6 shows the time
evolution of the Tscore, Eq. (6), according to which the
anomalies were triaged. For more details on the derivation of
the chart and table, please refer to [12]. The structure of the
table corresponds to the workflow in PCA intrusion detection.
First, a set of observations are triaged as the most relevant
from the security perspective. Five observations are high-
lighted over the rest. In particular, an interval of 20 minutes
around midnight of the second day includes 4 out of these
5 anomalies. To further investigate these anomalies, the PCA
diagnosis points to the features in the fourth column of the
table. Combining both the information in columns 3 and 4,
the specific raw log entries corresponding to the anomalies
can be identified and interpreted, as explained in [12].

The interpretation of the anomalies is listed in the last
column of Table 3. First, several data exfiltration attempts
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TABLE 3. VAST2102: Anomaly Report with PCA [12].

TABLE 4. VAST2102: Anomaly Report with GPCA.

by Telnet and SSH were made. Subsequently, an informa-
tion leakage carried out using SNMP was detected by the
IDS. Multiple vulnerability scans targeting remote desktop
services like VNC and RDP followed. Some 17 hours later,
a coordinated attack from multiple infected systems targeted
the DNS server. All these observations correspond to land-
marks in the killchain of an attack, and were effectively
highlighted by the PCA anomaly detector. However, part of
useful information for diagnosing the problem is missing in
this security report.

In comparison, the security report obtained with GPCA
is shown in Table 4. We extracted 6 Group-wise Principal
Components (GPCs), each of them of decreasing variance
with respect to the previous one, using the correlation map
computed by MEDA and shown in Figure 7. Each GPC
models a group of features identified in the MEDA plot.
These are shown in the third column of the table. By taking
the maximum of the weight of the selected features, with
values between 1 and 10, we can rate the GPCs according
to their security relevance. This is shown in column 4. This
relevance can be made visual as illustrated in Figure 7, so that
a relevance of 10 is shown as a square in red colour, and a

FIGURE 7. MEDA plot.

relevance below 3 is shown as a square in green colour. This
is useful to guide the analyst, who would focus her attention
in GPCs of high relevance.

Following this idea, the most relevant GPC is GPC2,
followed by GPC1, GPC3 and GPC5. These are shown in
red and orange colours in Figure 7. The temporal evolution
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FIGURE 8. Group-wise Principal Components: variance and relevance between parenthesis.

of the GPCs, obtained with GPCA, is shown in Fig. 8.
Starting with GPC2, in both the plot and the table we can
see that there was an attack to the DNS server right at
the beginning of the capture, at 05/04 18:07, much before
than when it was noticed with PCA. GPC1 and GPC3 show
the data exfiltration and scanning attempts also highlighted
by PCA. However, GPC4, GPC5 and GPC6 show a sus-
tained behaviour, not anomalous but present during the
entire capture, that went unnoticed by the PCA anomaly
detector. In particular, GPC5 and GPC6 reflect the use
of IRC traffic, something which is not permitted accord-
ing to the security policies of a bank network, and that
shows the command and control communication of the
botnet.

VI. CASE STUDY II: ISP NETWORK
In this second test case, we are interested in the analysis of
data coming from a real network scenario, so that we can test
the usefulness of GPCA for security analysts when applied to
real traffic.

A. EXPERIMENTAL FRAMEWORK
For our purpose, we select the UGR’16 dataset [44]. This is a
dataset obtained from a Tier-3 ISP where traffic is generated
by hosted of companies, web and email servers, recursive
DNS servers, virtualisation environments, etc. In this net-
work, a set of sensors were deployed in the border routers

TABLE 5. Features of the calibration and the test sets in the
UGR’16 dataset.

so that ingress and egress network traffic flows were mon-
itored. The dataset consists of Netflow traces corresponding
to more than 16,000M connections for more than four months
in 2016. It is divided into two sets: a calibration set for
building models from ‘‘normal’’ traffic and a test set, where
attacks using real hacking tools were generated from a set
of 25 virtual machines. Details about the dataset are shown
in Table 5.
We are interested in evaluating the differences in the work-

flows of GPCA and PCA when an exploratory analysis is
applied to a subset of the dataset. For this purpose, we choose
a 3 hours trace from t0 = [08/06/2016 18:00h] to tf =
[08/06/2016 20:59h]. In the first hour of the trace, DoS and
scan attacks are executed in the following manner (see details
in [44]):
• At t0: DoS11. A low rate DoS attack from one machine
to another (one-to-one) is performed for 3 minutes.
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The attack consists in sending SYN packets directed to
port 80 (HTTP) in the victim machine.

• At t0+10m:DoS53s. The same low rate DoS attack as in
DoS11 is performed for 3minutes, but now it is launched
from 5machines and directed to 3 machines. The attacks
are all synchronized in time. This attack generates five
times more traffic than the DoS11 attack.

• At t0 + 20m: DoS53a. This attack is similar to DoS53s,
but now the attack is spread out during 10 minutes so
that during the first 3 minutes two machines attack a
given victim. Then, after one minute with no attacks,
a new attack burst is struck during 3 minutes (two
machines against one). Finally, after anotherminutewith
no attacks, the last burst is started from a single machine
to a victim. Note that these three bursts last 10 minutes.
In the first two bursts, the traffic volume is higher than
in DoS11 but lower than DoS53s. For the third burst,
the amount of traffic is similar to DoS11.

• At t0+40m: Scan11. A port scan attack is performed for
3 minutes from an attacker machine to a victim.

• At t0 + 50m: Scan44. During 3 minutes, four machines
are scanning four different victims.

During the second hour in this trace, a Neris botnet [45]
is communicating with 20 infected machines in the network.
Finally, the third hour is free of attacks (background traffic
only).

In order to analyse the trace with PCA and GPCA, we first
pre-process it and obtain 134 numeric features for every
minute of traffic. These features are calculated following the
feature-as-a-counter approach [14]. For example, the feature
sport_http accounts for the number of flows in a minute
that have the source port equal to 80. A summary of the
features collected is shown in Table 6. Thus, for the three
hours trace, our dataset is a matrix of 180 rows (observations,
in minutes) for 134 features.

TABLE 6. Variable values considered as features in our detection system.

B. EXPLORATORY INTRUSION DETECTION
Beginning with the PCA analysis, a security analyst would
first obtain the Tscore values for the different observa-
tions (minutes) as shown in Fig. 9. Then, for the main anoma-
lies pointed out by the Tscore (signalled with red circles
in Fig. 9), he/she would proceed with a detailed analysis

FIGURE 9. T-score values for PCA anomaly detection UGR’16 trace
scenario.

i) identifying the features responsible for the anomaly
(oMEDA analysis), ii) selecting those raw traces (connec-
tions) involved in the anomaly, and iii) interpreting them.

Now we explain the analysis we have done for these
anomalies. A summary is given in Table 7.
• Observation 11: The involved features indicate that the
anomaly is triggered by HTTP traffic (dport_http,
sport_http), with connections that transport a
low number of bytes in the range [150, 1000)
(nbytes_low), that use ports which are in the
range [0, 1024] (sport_reserved (in this case only
port 80 – HTTP is used), and are failed connections
(tcpflags_RST). Our interpretation of this traffic is
that the anomaly is generated by a DoS attack struck
with HTTP traffic. This attack pattern corresponds to
the DoS53s attack in the UGR’16 trace.

• Observation 28: The involved features point out to ICMP
traffic (protocol_icmp, sport_zero) and Tel-
net traffic (sport_telnet). After observing the raw
traces for Telnet and ICMP, we conclude that, while we
do not appreciate any odd behaviour in Telnet traffic,
an anomaly in ICMP traffic is actually present. It is an
ICMP Scan from the IP 224.231.46.145 to the whole
range of addresses in the ISP.

• Observation 51: The number of features involved in
this anomaly is large, and all of them are related to
different ports, both as source and destination. This is
a clear indication of a Port Scanning attack. It actually
corresponds to the UGR’16 Scan44 attack.

• Observation 80: Now the features are clearly pointing
out to an anomaly in the DNS traffic (sport_dns,
dport_dns, protocol_udp). After exploring the
raw traces in this minute we find that infected bots (Neris
botnet) are the responsible nodes for this anomaly.

• Observation 101: The features are indicating that the
anomaly is caused by HTTPS traffic (dport_https)
with the URGENT flag activated (tcpflags_URG).
We explore the values of these two features (see Fig. 10),
and find out that the amount of packets with URG flag
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TABLE 7. UGR’16: Anomaly Report with PCA using the Multivariate Big Data Analysis (MBDA) approach [12] for the UGR’16 trace.

FIGURE 10. Time evolution of features tcpflags_URG and dport_https
in the UGR’16 trace.

is very reduced (around 80) and the IP addresses from
where this traffic is generated do not follow a clear
pattern. Thus, we conclude that this anomaly is not an
actual attack.

Now we are interested in showing how the GPCA work-
flow would simplify the security analyst goal of interpreting
the different anomalies. Following the GPCA methodology,
an analyst would first obtain theMEDAplot shown in Fig. 11,
revealing the groups of variables that exhibit a minimum
correlation level. Then, from this set of groups, the analyst
can prioritise the most important GPCs, mainly according to
the amount of variance captured and the relevance of features
included in the groups according to her expert knowledge.
Like in the previous example, we have introduced the expert
knowledge by establishing a weighted score (in the interval
[1, 10]) to every possible feature as shown in Table 8. In this
example, we are specially concerned about IRC (relevance 8),
Emule (relevance 8) and Metasploit traffic (relevance 10),
as these types of traffic should not normally exist in this net-
work.We also want to prioritise somehow anomalies in which
the amount of traffic is very high or very low (relevance 5).

In Table 9, we show the analysis for the six most relevant
GPCs. First, the analyst would give an interpretation of every

TABLE 8. Weights assigned to the features in the UGR’16 dataset as
expert knowledge from the security analyst.

group of features. Our interpretation (last column of Table 9)
is obtained as follows:
• GPC1. This group is formed by a large number of fea-
tures related to different ports (source or destination).
Anomalies within this group will have the characteristic
of being traffic that uses many different ports. Thus,
we interpret that this group represents port scan anoma-
lies. The relevance of group 1 is given by the most
relevant feature included in this group, being in this case
equal to 8 (dport_emule).

• GPC2. Here, the features are indicating that the
abnormality is given by an unusual number of con-
nections with very low number of packets (< 4)
(npackets_verylow), which are TCP flows
with SYN flag activated from public IP addresses
(ip_public, protocol_tcp, tcpflags_SYN).
Our interpretation is that this is generated when abnor-
mal bursts of traffic occur. The relevance of this group is
determined by the npackets_verylow feature, thus
adopting a value of 5.

• GPC3. Observing the features included by GPCA in
this group, we deduce that the anomalies detected are
related to connections with a reduced number of bytes
(nbytes_low), using HTTP port and RST flag. Our
interpretation, in this case, is that this group represents
HTTP DoS attacks. The relevance of this group is 1.

• GPC4. This group represents anomalies in DNS traffic
(port_dns), using UDP (protocol_udp) traffic.

• GPC5. In this case, the features selected by the algo-
rithm are not pointing us to an intuitive interpretation
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FIGURE 11. MEDA plot for the UGR’16 trace in the GPCA analysis.

TABLE 9. UGR’16: Anomaly Report with GPCA for the UGR’16 trace.

of any type of anomaly. Thus, we leave this group with
no interpretation for further inspection of the anoma-
lies signalled by the group of features. It is important
to recognise that even using GPCA, which eases the
interpretability of the information, it is possible to find
groups that are not meaninful in terms of security.

• GPC6. This group is directly related to ICMP anomalies
(sport_zero, protocol_icmp).

The final step in the workflow followed by the analyst
is the evaluation of the evolution of the scores associated
to every GPC. This is represented in Fig. 12, where we see

the anomalies identified by labels in every GPCA group.
Let us analyse these results following a per attack type
classification:
• Scan attacks. These attacks are directly revealed by
GPC1 (Port Scan Anomalies), but also GPC2 (burst of
traffic anomalies) is able to reveal the amount of traffic
generated in Scan44. Yet, GPC2 is not able to signal
Scan11 as an anomaly, while GPC1 is.

• DoS attacks.We can check howDoS attacks are detected
by GPC2 (bursts of traffic anomalies) and GPC3 (HTTP
DoS), and they are struck with HTTP traffic. We are also
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FIGURE 12. Evolution of scores in the different GPCA Groups for the UGR’16 trace.

able to see that DoS53s is detected with a higher level of
scores, as the traffic volume generated in this attack is
higher than in DoS11 and DoS53a.

• DNS anomaly generated by the Neris Botnet. This
anomaly is directly pointed out at observation #80 by
GPC3 (DNS anomalies), but it is also detected by GPC2
(bursts of traffic anomalies). Yet, the detection level in
the case of GPC2 is more reduced than in GPC3, mainly
because GPC2 only considers TCP traffic.

• ICMP anomaly. This anomaly is detected by GPC6 at
observation #28.

VII. DISCUSSION
Through the previous two examples, we observe how both
workflows (PCA and GPCA) can detect anomalies. We claim
that the GPCA workflow is a good candidate to complement
PCA, mainly because it is more natural for security analysts
for the following reasons:

a) It allows incorporating expert knowledge in the model.
We have done it with a weight associated with every
feature, but alternative models can be used.

b) It allows prioritising the analysis by selecting specific
groups based on the amount of variance of the com-
ponents and/or expert knowledge. In the case of PCA,
note that the analyst can only prioritise the anomalies
to be studied according to the Tscore level (e.g., Fig. 9),
which could not be the best indicator of the real rele-
vance of incidents.

c) Once the interpretation of groups is done in GPCA,
the analysis of additional anomalies is straightforward,
while in PCA a new (diagnosis) analysis is needed per
any new anomaly that appears.

d) In some cases, GPCAwill be able to detect new anoma-
lies that remain hidden to PCA because they are small
and/or sustained. If these anomalies fall in the groups
prioritised in GPCA, they will be signalled with a
higher probability. This is the case of IRC traffic in case
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study I and Scan11 in case study II, which remained
hidden in PCA, while it can be identified in GPCA.

VIII. CONCLUSION
In this paper, we propose an exploratory anomaly detection
methodology based on the Group-wise Principal Component
Analysis (GPCA) method. This methodology has shown to
be powerful and easy to understand by security practitioners
without strong knowledge onmultivariate analysis. It can also
be combined with expert knowledge, allowing the analyst
to tune the system according to her experience. The appli-
cation of the approach is illustrated with two case studies.
We believe this method is a useful addition to the security
analyst toolbox.
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