Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz Cabello, Miguel
dc.contributor.authorDíaz Angulo, Luis Manuel 
dc.contributor.authorAlvarez Gonzalez, Jesus
dc.contributor.authorFlintoft, Ian
dc.contributor.authorBourke, Samuel
dc.contributor.authorDawson, John
dc.contributor.authorGómez Martín, Rafael Antonio 
dc.contributor.authorGonzález García, Salvador
dc.date.accessioned2018-04-13T11:52:43Z
dc.date.available2018-04-13T11:52:43Z
dc.date.issued2017
dc.identifier.citationRuiz Cabello, M. ; et. al. A hybrid Crank-Nicolson FDTD subgridding boundary condition for lossy thin-layer modeling. IEEE Transactions on Microwave Theory and Techniques, Volume: 65, Issue: 5, pp. 1397 - 1406, May 2017 [http://hdl.handle.net/10481/50214]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/50214
dc.description.abstractThe inclusion of thin lossy, material layers, such as carbon based composites, is essential for many practical applications modeling the propagation of electromagnetic energy through composite structures such as those found in vehicles and electronic equipment enclosures. Many existing schemes suffer problems of late time instability, inaccuracy at low frequency, and/or large computational costs. This work presents a novel technique for the modeling of thin-layer lossy materials in FDTD schemes which overcomes the instability problem at low computational cost. For this, a 1D-subgrid is used for the spatial discretization of the thin layer material. To overcome the additional time-step constraint posed by the reduction in the spatial cell size, a Crank-Nicolson time-integration scheme is used locally in the subgridded zone, and hybridized with the usual 3D Yee-FDTD method, which is used for the rest of the compu- tational domain. Several numerical experiments demonstrating the accuracy of this approach are shown and discussed. Results comparing the proposed technique with classical alternatives based on impedance boundary condition approaches are also presented. The new technique is shown to have better accuracy at low frequencies, and late time stability than existing techniques with low computational cost.es_ES
dc.description.sponsorshipThis work has received funding from the Projects TEC2013-48414-C3-01, TEC2016-79214-C3-3-R, and TEC2015-68766-REDC (Spanish MINECO, EU FEDER), P12-TIC-1442 (J. de Andalucia, Spain), Alhambra-UGRFDTD (AIRBUS DS), and by the CSIRC alhambra.ugr.es supercomputing center. This work was also supported by a STSM Grant from COST Action IC140 (ACCREDIT)es_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectFinite-Difference Time Domaines_ES
dc.subjectSubcell modelses_ES
dc.subjectThin layeres_ES
dc.subjectCrank-Nicolsones_ES
dc.subjectHybrid implicit-explicites_ES
dc.subjectCarbon fiber compositees_ES
dc.subjectElectromagnetic shieldinges_ES
dc.subjectLossy materialses_ES
dc.titleA hybrid Crank-Nicolson FDTD subgridding boundary condition for lossy thin-layer modelinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TMTT.2016.2637348


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License