• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian variable selection in cost-effectiveness analysis

[PDF] Negrin_Bayesian.pdf (369.9Ko)
Identificadores
URI: http://hdl.handle.net/10481/32287
DOI: 10.3390/ijerph7041577
ISSN: 1660-4601
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Negrín, Miguel A.; Vázquez-Polo, Francisco J.; Martel-Escobar, María del Carmen; Moreno, Elías; Girón, Francisco J.
Editorial
MDPI
Materia
Variable selection
 
Bayesian analysis
 
Cost-effectiveness
 
BIC
 
Intrinsic Bayes factor
 
Fractional Bayes Factor
 
Subgroup analysis
 
Date
2010
Referencia bibliográfica
Negrín, M.A.; et al. Bayesian variable selection in cost-effectiveness analysis. International Journal of Environmental Research and Public Health, 7: 1577-1596 (2010). [http://hdl.handle.net/10481/32287]
Patrocinador
This research was partially supported by grants SEJ-02814 (Junta de Andalucía, Spain), SEJ2007-65200 and SEJ2006-12685 (Ministerio de Educación y Ciencia, Spain) and ECO2009-14152 (Ministerio de Ciencia e Innovación, Spain).
Résumé
Linear regression models are often used to represent the cost and effectiveness of medical treatment. The covariates used may include sociodemographic variables, such as age, gender or race; clinical variables, such as initial health status, years of treatment or the existence of concomitant illnesses; and a binary variable indicating the treatment received. However, most studies estimate only one model, which usually includes all the covariates. This procedure ignores the question of uncertainty in model selection. In this paper, we examine four alternative Bayesian variable selection methods that have been proposed. In this analysis, we estimate the inclusion probability of each covariate in the real model conditional on the data. Variable selection can be useful for estimating incremental effectiveness and incremental cost, through Bayesian model averaging, as well as for subgroup analysis.
Colecciones
  • DEIO - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire