Bayesian variable selection in cost-effectiveness analysis
Metadatos
Mostrar el registro completo del ítemAutor
Negrín, Miguel A.; Vázquez-Polo, Francisco J.; Martel-Escobar, María del Carmen; Moreno, Elías; Girón, Francisco J.Editorial
MDPI
Materia
Variable selection Bayesian analysis Cost-effectiveness BIC Intrinsic Bayes factor Fractional Bayes Factor Subgroup analysis
Fecha
2010Referencia bibliográfica
Negrín, M.A.; et al. Bayesian variable selection in cost-effectiveness analysis. International Journal of Environmental Research and Public Health, 7: 1577-1596 (2010). [http://hdl.handle.net/10481/32287]
Patrocinador
This research was partially supported by grants SEJ-02814 (Junta de Andalucía, Spain), SEJ2007-65200 and SEJ2006-12685 (Ministerio de Educación y Ciencia, Spain) and ECO2009-14152 (Ministerio de Ciencia e Innovación, Spain).Resumen
Linear regression models are often used to represent the cost and effectiveness of medical treatment. The covariates used may include sociodemographic variables, such as age, gender or race; clinical variables, such as initial health status, years of treatment or the existence of concomitant illnesses; and a binary variable indicating the treatment received. However, most studies estimate only one model, which usually includes all the covariates. This procedure ignores the question of uncertainty in model selection. In this paper, we examine four alternative Bayesian variable selection methods that have been proposed. In this analysis, we estimate the inclusion probability of each covariate in the real model conditional on the data. Variable selection can be useful for estimating incremental effectiveness and incremental cost, through Bayesian model averaging, as well as for subgroup analysis.