Afficher la notice abrégée

dc.contributor.authorArnedo Fernández, Francisco Javier 
dc.contributor.authorVal Muñoz, María Coral Del 
dc.contributor.authorErausquin, Gabriel Alejandro de
dc.contributor.authorRomero-Zaliz, Rocío
dc.contributor.authorSwrakic, Dragan
dc.contributor.authorCloninger, Claude Robert
dc.contributor.authorZwir Nawrocki, Jorge Sergio Igor 
dc.date.accessioned2013-10-18T08:16:20Z
dc.date.available2013-10-18T08:16:20Z
dc.date.issued2013
dc.identifier.citationArnedo, J.; et al. PGMRA: a web server for (phenotype × genotype) many-to-many relation analysis in GWAS. Nucleic Acids Research, 41(W1): W142-W149 (2013). [http://hdl.handle.net/10481/28445]es_ES
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/10481/28445
dc.description.abstractIt has been proposed that single nucleotide polymorphisms (SNPs) discovered by genome-wide association studies (GWAS) account for only a small fraction of the genetic variation of complex traits in human population. The remaining unexplained variance or missing heritability is thought to be due to marginal effects of many loci with small effects and has eluded attempts to identify its sources. Combination of different studies appears to resolve in part this problem. However, neither individual GWAS nor meta-analytic combinations thereof are helpful for disclosing which genetic variants contribute to explain a particular phenotype. Here, we propose that most of the missing heritability is latent in the GWAS data, which conceals intermediate phenotypes. To uncover such latent information, we propose the PGMRA server that introduces phenomics—the full set of phenotype features of an individual—to identify SNP-set structures in a broader sense, i.e. causally cohesive genotype–phenotype relations. These relations are agnostically identified (without considering disease status of the subjects) and organized in an interpretable fashion. Then, by incorporating a posteriori the subject status within each relation, we can establish the risk surface of a disease in an unbiased mode. This approach complements—instead of replaces—current analysis methods. The server is publically available at http://phop.ugr.es/fenogeno.es_ES
dc.description.sponsorshipFunding for open access charge: Spanish Ministry of Science and Technology under projects [TIN2009-13950] and [TIN2012-38805]; Consejería de Innovación, Investigación y Ciencia, Junta de Andalucía, under project [TIC-02788]; UGR, under project [GREIB 2011]; R. L. Kirschstein National Research Award at Washington University School of Medicine.es_ES
dc.language.isoenges_ES
dc.publisherOxford University Press (OUP)es_ES
dc.subjectSingle nucleotide polymorphisms (SNPs)es_ES
dc.subjectGenome-wide association studies (GWAS)es_ES
dc.subjectPhenotypees_ES
dc.subjectGenotypees_ES
dc.subjectRegulatory networkes_ES
dc.subjectSchizophrenia es_ES
dc.subjectDiseasees_ES
dc.titlePGMRA: a web server for (phenotype × genotype) many-to-many relation analysis in GWASes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1093/nar/gkt496es_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée