• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

PGMRA: a web server for (phenotype × genotype) many-to-many relation analysis in GWAS

[PDF] Nucl. Acids Res.-2013-Arnedo-W142-9.pdf (1.930Mo)
Identificadores
URI: http://hdl.handle.net/10481/28445
DOI: 10.1093/nar/gkt496
ISSN: 0305-1048
ISSN: 1362-4962
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Arnedo Fernández, Francisco Javier; Val Muñoz, María Coral Del; Erausquin, Gabriel Alejandro de; Romero-Zaliz, Rocío; Swrakic, Dragan; Cloninger, Claude Robert; Zwir Nawrocki, Jorge Sergio Igor
Editorial
Oxford University Press (OUP)
Materia
Single nucleotide polymorphisms (SNPs)
 
Genome-wide association studies (GWAS)
 
Phenotype
 
Genotype
 
Regulatory network
 
Schizophrenia
 
Disease
 
Date
2013
Referencia bibliográfica
Arnedo, J.; et al. PGMRA: a web server for (phenotype × genotype) many-to-many relation analysis in GWAS. Nucleic Acids Research, 41(W1): W142-W149 (2013). [http://hdl.handle.net/10481/28445]
Patrocinador
Funding for open access charge: Spanish Ministry of Science and Technology under projects [TIN2009-13950] and [TIN2012-38805]; Consejería de Innovación, Investigación y Ciencia, Junta de Andalucía, under project [TIC-02788]; UGR, under project [GREIB 2011]; R. L. Kirschstein National Research Award at Washington University School of Medicine.
Résumé
It has been proposed that single nucleotide polymorphisms (SNPs) discovered by genome-wide association studies (GWAS) account for only a small fraction of the genetic variation of complex traits in human population. The remaining unexplained variance or missing heritability is thought to be due to marginal effects of many loci with small effects and has eluded attempts to identify its sources. Combination of different studies appears to resolve in part this problem. However, neither individual GWAS nor meta-analytic combinations thereof are helpful for disclosing which genetic variants contribute to explain a particular phenotype. Here, we propose that most of the missing heritability is latent in the GWAS data, which conceals intermediate phenotypes. To uncover such latent information, we propose the PGMRA server that introduces phenomics—the full set of phenotype features of an individual—to identify SNP-set structures in a broader sense, i.e. causally cohesive genotype–phenotype relations. These relations are agnostically identified (without considering disease status of the subjects) and organized in an interpretable fashion. Then, by incorporating a posteriori the subject status within each relation, we can establish the risk surface of a disease in an unbiased mode. This approach complements—instead of replaces—current analysis methods. The server is publically available at http://phop.ugr.es/fenogeno.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire