• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks

[PDF] 2013AAPclusters.pdf (353.0Kb)
Identificadores
URI: http://hdl.handle.net/10481/24426
ISSN: 0001-4575
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Oña López, Juan José De; López Maldonado, Griselda; Mujalli, Randa Oqab; Calvo Poyo, Francisco Javier
Editorial
Elsevier
Materia
Cluster analysis
 
Latent class clustering (LCC)
 
Bayesian networks (BNs)
 
Traffic accidents
 
Classification
 
Injury severity
 
Highways
 
Road safety
 
Fecha
2013
Referencia bibliográfica
de Oña, J.; López, G.; Mujalli, R.O.; Calvo, F.J. Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accident Analysis and Prevention 51: 1–10 (2013). [http://hdl.handle.net/10481/24426]
Patrocinador
TRYSE Research Group, Department of Civil Engineering, University of Granada, Spain
Resumen
One of the principal objectives of traffic accident analyses is to identify key factors that affect the severity of an accident. However, with the presence of heterogeneity in the raw data used, the analysis of traffic accidents becomes difficult. In this paper, Latent Class Cluster (LCC) is used as a preliminary tool for segmentation of 3229 accidents on rural highways in Granada (Spain) between 2005 and 2008. Next, Bayesian Networks (BNs) are used to identify the main factors involved in accident severity for both, the entire database (EDB) and the clusters previously obtained by LCC. The results of these cluster-based analyses are compared with the results of a full-data analysis. The results show that the combined use of both techniques is very interesting as it reveals further information that would not have been obtained without prior segmentation of the data. BN inference is used to obtain the variables that best identify accidents with killed or seriously injured. Accident type and sight distance have been identify in all the cases analysed; other variables such as time, occupant involved or age are identified in EDB and only in one cluster; whereas variables vehicles involved, number of injuries, atmospheric factors, pavement markings and pavement width are identified only in one cluster.
Colecciones
  • TEP246 - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias