
 

 

 

 

 

 

 

Analysis of traffic accidents on rural highways 

using Latent Class Clustering and Bayesian 

Networks 

 

By: Juan de Oña, Griselda López, Randa Mujalli and Francisco J. Calvo 

 

This document is a post-print version (ie final draft post-refereeing) of the following 

paper: 

 

Juan de Oña, Griselda López, Randa Mujalli and Francisco J. Calvo (2013) Analysis of 

traffic accidents on rural highways using Latent Class Clustering and Bayesian 

Networks. Accident Analysis and Prevention, 51, 1-10. 

Direct access to the published version: http://dx.doi.org/10.1016/j.aap.2012.10.016  

 

 



1 

 

Analysis of traffic accidents on rural highways using Latent Class 

Clustering and Bayesian Networks 

 
 

ABSTRACT 

 

One of the principal objectives of traffic accident analyses is to identify key factors that affect 

the severity of an accident. However, with the presence of heterogeneity in the raw data used, 

the analysis of traffic accidents becomes difficult. In this paper, Latent Class Cluster (LCC) is 

used as a preliminary tool for segmentation of 3,229 accidents on rural highways in Granada 

(Spain) between 2005 and 2008. Next, Bayesian Networks (BN) are used to identify the main 

factors involved in accident severity for both, the entire database (EDB) and the clusters 

previously obtained by LCC. The results of these cluster-based analyses are compared with the 

results of a full-data analysis. The results show that the combined use of both techniques is very 

interesting as it reveals further information that would not have been obtained without prior 

segmentation of the data. BN inference is used to obtain the variables that best identify 

accidents with killed or seriously injured. Accident type and sight distance have been identify in 

all the cases analyzed; other variables such as time, occupant involved or age are identified in 

EDB and only in one cluster; whereas variables vehicles involved, number of injuries, 

atmospheric factors, pavement markings and pavement width are identified only in one cluster. 

 

Keywords: Cluster Analysis; Latent Class Clustering; Bayesian Networks; traffic accidents; 

classification; injury severity; highways; road safety 

 

 

1. INTRODUCTION 

 

Traffic accidents are contingent events and analysing them requires awareness of the 

particularities that define them. In general, accidents are defined by a series of variables – 

generally discrete variables – that explain them. Once the nature of the variables is known, 

researchers select the method that is most appropriate for developing and implementing the best 

statistical models for analysing the data in each case (Lord and Mannering, 2010; Savolainen et 

al., 2011; Mujalli and de Oña, in press).  

 

One of the main problems of accident data and their modelling process is their heterogeneity 

(Savolainen et al., 2011). If this is not taken into account during the analysis, certain 

relationships between the data may not be detected. Researchers often try to reduce 

heterogeneity by segmenting traffic accident data on the basis of expert domain knowledge, 

methodological decisions or the intention to study a specific problem. Although expert 

knowledge can lead to a workable segmentation, it does not guarantee that each segment 

consists of a homogenous group of traffic accidents (Depaire et al., 2008). That is why specific 

analysis techniques, such as cluster analysis (CA), are used as aids in traffic accident 

segmentation. 

 

CA has been used in road safety analysis as a preliminary tool for attaining several aims. 

Karlaftis and Tarko (1998) used it to classify 92 areas of the state of Indiana into urban, sub-

urban and rural areas. They applied Negative Binomial (NB) regression models to the results in 

order to analyse the influence of driver age on accidents. The results obtained with a model that 

used all the data and models based on clustered data showed statistically significant differences. 

Subsequently, Sohn (1999) used a Poisson regression model for previously clustered data (based 

on the latitude and longitude of each crash) to analyse accident frequency. Using CA, GIS 

(Geographic Information Systems) and NB models, Ng et al. (2002) developed an algorithm for 

estimating the number of accidents and evaluating their risk in a specific area. In a later study, 

Wong et al. (2004) proposed a method for evaluating the effect of a series of road safety 
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strategies implemented in Hong Kong. They used CA as a preliminary step for grouping 

different road safety programmes and projects into smaller groups with significant road safety 

strategies. Ma and Kockelman (2006) used CA and a Probit model to analyse the relationship 

between crash frequency and severity, road design, and the characteristics of use in the state of 

Washington.  

 

Depaire et al. (2008) used Latent Class Cluster (LCC) and Multinomial Logit (MNL) models to 

study the severity of traffic accidents. In their study, they identified seven clusters that represent 

different types of traffic accidents. Subsequently, they applied an MNL model to the full set of 

data and on each of seven identified clusters. Their results showed that the clustered data 

provided information that would not have been obtained if only the full database had been used. 

Recently, LCC have also been used by Park and Lord (2009) and Park et al. (2010) in order to 

segment a database and analyses vehicle crash data. Finally, Pardillo-Mayora et al. (2010) used 

CA to analyse data from run off road accidents to calibrate a roadside hazardous index for two-

lane roads in Spain. The four characteristics considered for the index were: roadside slope, non-

traversable obstacles, safety barrier installation, and alignment. They used CA to group the 120 

combinations of the four indicators into categories with homogeneous effects on severity.  

 

Many previous studies have focused on compressing and identifying key factors that have an 

impact on the severity of the consequences of road accidents. Many different methodological 

approaches have been used to analyse severity (Savolainen et al., 2011): probit models 

(Bayesian ordered, binary, bivariate binary, bivariate ordered, heteroskedastic ordered, 

multivariate, ordered, random parameters ordered), logit models (bayesian hierarchical 

binomial, binary, generalized ordered, heteroskedastic ordered, markow switching multinomial, 

mixed generalized ordered, mixed joint binary, multinomial, nested, ordered, random 

parameters, random parameters ordered, sequential binary, sequential, simultaneous binary), 

log-linear model, partial proportional odds model, artificial neural networks, and classification 

and regression trees. Recently, Bayesian Networks (BN) are being used to analyse traffic 

accident severity, with satisfactory results (Simoncic, 2004; De Oña et al., 2011; Mujalli and de 

Oña, 2011). 

 

This paper presents an analysis of traffic accidents based on a combination of Cluster Analysis 

and Bayesian Networks. To the best of our knowledge, this is the first time that both approaches 

have been used together. The paper is structured as follows: Section 2 shows the methodology 

used to conduct the analysis, with a description of the Latent Class Clustering Analysis and 

Bayesian Network techniques. Next, key characteristics of the data analysed are described. 

Section 4 shows the results and discussion, followed by the conclusions. 

 

2. METHODOLOGY 

 

2.1. Latent Class Clustering analysis  

CA is an unsupervised learning technique within the field of Data Mining, where its principal 

objective is to group a finite subset of elements in a number of groups or clusters. CA is based 

on heuristics that try to maximize the similarity between in-cluster elements and the 

dissimilarity between inter-cluster elements (Fraley and Raftery, 2002). The similarity-based 

techniques include two main approaches: the hierarchical approach (e.g. Ward’s method, a 

single linkage method) and the partitioning approach (e.g. K-means). Both approaches have 

been used in road safety (Sohn, 1999; Karlaftis and Tarko, 1998; Ng et al., 2002; Wong et al., 

2004; Pardillo-Mayora et al., 2010), although the statistical properties of these methods are 

relatively unknown (Fraley and Raftery, 2002).  

 

Another type of CA is Latent Class Clustering (LCC) (Moustaki and Papageorgiou, 2005; 

Vermunt and Magidson, 2002). In this type, the statistical properties of probability model-based 

clustering techniques are better understood (Bock, 1996; Fraley and Raftery, 2002). Although 
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when using any kind of cluster analysis method it is inevitable to introduce some kind of 

subjective judgment, LCC have some important advantages over other types of cluster analysis 

methods (Hair et. al, 1998, Madgison and Vermunt, 2002 and Vermunt and Magidson, 2005), 

such as:  

- Being able to use different types of variables (frequencies, categorical, metric variables 

or a combination of them), with no need for prior standardization that could have a 

bearing on the results. 

- The method provides several statistical criteria that help to decide the most appropriate 

number of clusters. 

- LCC allow probability classifications to be made by using subsequent membership 

probabilities estimated with maximum likelihood method. 

 

Given a data sample of N cases (or accidents), measured with a set of observed variables, 

Y1,…,Yj which are considered indicators of a latent variable X; and where these variables form 

a Latent Class Model (LCM) with T classes. If each observed value contains a specific number 

of categories: Yi contains  categories, with i=1…j; then the manifest variables make a multiple 

contingency table with  response patterns. If  denotes probability,  represents the 

probability that a randomly selected case belongs to the latent t class, with t=1, 2,…, T. 

 

The regular expression of LCMs is given by: 

 

  (1) 

 

With  response-pattern vector of case i;  is the prior probability of membership in cluster 

t; is the conditional probability that a randomly selected case has a response pattern = 

(y1,…,yj), given its membership in the t class of latent variable X. Local independence is the 

underlying assumption that needs to be verified, and therefore Eq. (1) is re-written: 

 

        with     and    (2) 

 

For a detailed explanation of LCC analysis see Sepúlveda (2004). 

 

The estimation of the model is based on the nature of the manifest variables, since it is assumed 

that the conditional probabilities may follow different formal functions (Vermunt and 

Magidson, 2005). The method of maximum likelihood is the most widely used method for 

estimating the model's parameters. Once the model has been estimated, the cases are classified 

into different classes by using the Bayes rule to calculate the a posteriori probability that each n 

subject comes from the t class (^ are the model's estimated values): 

 

  (4) 

 

In practice, the set of probabilities is calculated for each response pattern and the case is 

assigned to the latent case in which the probability is the highest. Thus, a specific accident may 

belong to different latent cases with a specific percentage of membership (with 100% being the 

sum total of membership probabilities). 

 

2.2. Number of clusters selection 

Given that the number of clusters is unknown at the start, the aim is to find the model that can 

explain or adapt the best to the data being used. In this paper we have used several information 

criterions for discovering the model that provides the most information on reality. The criterions 

are: Bayesian Information Criterion (BIC) (Raftery, 1986), Akaike Information Criterion (AIC) 
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(Akaike, 1987) and Consistent Akaike Information Criterion (CAIC) (Fraley and Raftery, 

1998).  

 

In clustering contexts, the BIC criterion has shown better performance than other criteria 

(Biernacki and Govaert, 1999). In general, the lower the value of the indicators, the better the 

model is, because it is more parsimonious and adapts better to the data. Nonetheless, when 

analysing large samples, the BIC and other information criteria often do not reach a minimum 

value with increasing number of clusters (Bijmolt et al., 2004). In that case, the percentage of 

reduction in BIC between competing models must be analysed, and additional criteria, such as 

entropy, should be used to select the optimal number of clusters. Entropy (Eq. 5) varies between 

0 and 1, and values over 0.90 denote a clear cluster differentiation; and also the interpretability 

of the clusters (McLachlan and Peel, 2000). 

 

  (5) 

 

2.3. Bayesian Networks 

Bayesian Networks’ (BN) applications have grown extensively into different fields, with 

theoretical and computational developments in many areas (Mittal et al., 2007), including: 

modelling knowledge in bioinformatics, medicine, document classification, information 

retrieval, image processing, data fusion, decision support systems, engineering, gaming, and 

law.  

 

Let U={x1, . . . , xn}, n≥1 be a set of variables. A BN over a set of variables U is a network 

structure, which is a Directed Acyclic Graph over U and a set of probability tables Bp = 

{p(xi|pa(xi), xi  U)} where  is the set of parents or antecedents of xi in BN and 

i=(1,2,3,….,n). A BN represents joint probability distributions  

 

Relationships between variables based on the theory of BN (Neapolitan, 2004), represented by 

arcs in the graph, could represent causality, relevance or relations of direct dependence between 

variables. However, for the purpose of this research we do not assume a causal interpretation of 

the arcs in the networks such as in Acid et al. (2004). Consequently, the arcs are interpreted as 

direct dependence relationships between the linked variables, and the absence of arcs means the 

absence of direct dependence between variables; however, indirect dependence relationships 

between variables could exist. 

 

The classification task consists in classifying a variable y = x0, called the class variable, given a 

set of variables U = x1 . . . xn, called attribute variables. A classifier h : U → y is a function that 

maps an instance of U to a value of y. The classifier is learned from a dataset D consisting of 

samples over (U, y). The learning task consists of finding an appropriate BN given a data set D 

over U. 

 

Following previous research (De Oña et al., 2011 and Mujalli and De Oña, 2011), the 

hillclimbing search algorithm and the MDL score were used to build the BNs for each one of 

the clusters selected in the previous step. The search algorithm and the score were applied in 

this study mainly because, besides being widely used and quick, they produce good results in 

terms of network complexity and accuracy (Madden, 2009). 

 

2.4. Performance evaluation indicators 

Several indicators were used to measure the model fitting for each one of the clusters. The 

indicators used in this study were accuracy, specificity, sensitivity, the harmonic mean of 

sensitivity and specificity (HMSS), and the ROC area.  
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  (6) 

  (7) 

  (8) 

  (9) 

 

Where tSI is true slight injured cases, tKSI true killed or seriously injured cases, fSI false slight 

injured cases, and fKSI false killed or seriously injured cases. 

 

Accuracy (Eq. 6) is a proportion of instances that were correctly classified. Accuracy only gives 

information on the classifier’s overall performance. Sensitivity (Eq. 7) represents the proportion 

of correctly predicted SI among all the observed SI. Specificity (Eq. 8) represents the proportion 

of correctly predicted KSI among all the observed KSI. Another measure was the Harmonic 

Mean of Sensitivity and Specificity (HMSS), which gives an equal weight both of sensitivity 

and specificity (Eq. 9).  

 

However, a trade-off exists between sensitivity and specificity. Therefore, we used the area 

under a Receiver Operating Characteristic (ROC) curve as a target performance measure. ROC 

curve represents the true positive rate (sensitivity) vs. the false positive rate (1-specificity). ROC 

curves are more useful as descriptors of overall performance, reflected by the area under the 

curve, with a maximum of 1.00 describing a perfect test and an ROC area of 0.50 describing a 

valueless test. 

 

2.5. BN inference 

Inference in BNs consists of computing the conditional probability of some variables, given that 

other variables are set to evidence. Inference may be done for a specific state or value of a 

variable, given evidence on the state of other variable(s). Thus, using the conditional probability 

table for the BN built, their values can be easily inferred. See De Oña et a. (2011) for a detailed 

explanation and examples.  

 

When using BNs, inference is necessary to interpret the analysis results from the road safety 

perspective. 

 

3. DATA 

 

Accident data were obtained from Spanish General Traffic Accident Directorate (DGT) for rural 

highways for the province of Granada (South of Spain) for a period of 5 years (2004-2008). 

Only data for 1, 2 or 3 involved vehicles were used for this analysis. The total number of 

accident’s records used is 3,229. Table 1 provides information on the data used for this study. 

 

(Table 1) 

 

Considering that the main objective of this study is to identify the key factors that affect the 

severity of traffic accidents, 18 explanatory variables based on De Oña et al. (2011) were used, 

and injury severity was considered a class variable, with two classes: slightly injured (SI), or 

killed or severely injured (KSI). 

 

The data included variables describing the conditions that contributed to the accident and injury 

severity: characteristics of the accident (month, time, day type, number of injuries, number of 

occupants, accident type, number of involved vehicles and cause); weather information 

(prevailing weather conditions and lighting); driver characteristics (age and gender); and road 

characteristics (pavement width, lane width, shoulder width, paved shoulder, pavement 

markings and sight distance). 
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4. RESULTS AND DISCUSSION 

 

4.1. Cluster analysis  

Latent GOLD software (v.4.0) was used for LCC analysis. Table 1 shows the 18 variables used, 

with injury severity as a dependent variable. In order to select the number of clusters, 10 models 

were generated (from one to 10 clusters). Figure 1 shows the evolution of BIC, AIC and CAIC 

for the 10 models. Increasing the number of clusters reduces BIC, AIC and CAIC values, but a 

higher degree of clusters implies a higher degree of complexity, leading to a less obvious 

clustering structure, despite a better statistical fit. 

 

From a practical point of view, it is no so useful to have a marginal improvement in statistical 

fit, but a higher degree of complexity. So, as a tradeoff between statistical fit and complexity of 

clustering structure the model selected is the one with 4 clusters. In any case, this selection is in 

accordance with the literature: Depaire et al. (2008) selected the model where BIC and CAIC 

hardly show any additional improvement; Scheire et al. (2008) chose a model in which the 

differences attained are less than 1%; In addition, the entropy for model 4 is 0.9873, which 

indicates a good separation between clusters (McLachlan and Peel, 2000). 

 

(Figure 1) 

 

Having ascertained the number of clusters, the next step consisted in characterizing them. To 

that end, it was necessary to identify the most important categories within each cluster for each 

variable (using for that the highest conditional probability obtained for a determined category of 

a variable given its membership to a specific cluster).  

 

Therefore, the characterization was based on utilizing the variables that permitted differentiation 

between clusters. Having performed the analysis, it was found that not all the variables could be 

used for the established target for the following reasons: 

- The highest value of probability was obtained for the same category of a specific 

variable in all of the clusters built. This occurs in the variables time (TIM), number of 

injuries (NOI), cause (CAU), atmospheric factors (ATF), lighting (LIG), age (AGE), 

pavement markings (ROM) and sight distance (SID). For example, in the case of the 

variable TIM, the highest probability of having an accident at each of the 4 target 

clusters of the study is obtained in the same time period (12-18]. It should be noticed 

that although this variable does not permit a characterisation of the clusters, it permits 

knowing that the highest probability of accidents occurs during this time period. 

- The probability values are distributed homogeneously between every possible category 

of a variable; and therefore it does not permit clusters’ characterization. This occurs in 

the variables month (MON) and day (DAY) (i.e. in cluster 1, the probability for each 

category of MON (Winter, Spring, Summer and Autumn) are 24.82%, 23.15%, 26.48% 

and 25.55%, respectively, and the same is true in clusters 2, 3 and 4. Thus, with these 

results, it is not possible to say that an accident would have a higher probability of 

occurrence in a specific season).  

 

Finally, Table 2 shows the five variables selected to characterise the clusters, along with their 

probability in each one of the 4 clusters identified. 

 

(Table 2) 

 

CLUSTER 1 (C1). It includes 100% of the accidents with 2 occupants or more, which occur on 

highways with a shoulder that is less than 1.5 m in 77% of the cases and is a paved shoulder in 

almost 100% of the cases. The collisions (with 94% of probability) are the type of accident that 

characterize C1, highlighting angle or side collisions (54%); in 88% of the cases 2 vehicles were 
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involved in the accident. Thus, based on these characteristics, C1 could be called: “Collisions on 

highways with shoulder”. 

 

CLUSTER 2 (C2). It includes 67% of the accidents in which only one occupant was involved, 

and which occur on highways with a shoulder width of 1.5 m in 78% of the cases, and that have 

a 99% probability of being paved. They are accidents that are caused by run-off-road 

with/without collision (83%), in which one vehicle was involved with 99% of probability. C2 

could be called: “Run-off-road accidents and collisions with pedestrians on highways with 

shoulder”. 

 

CLUSTER 3 (C3). It includes any accident with 2 occupants or more (0% of probability for 1 

occupant); but with a deviance in cluster 1, these are produced on highways without a shoulder 

or with an impractical shoulder (99%). The types of accident that characterize this cluster are 

collisions (with 94% of probability). Based on these characteristics, it is observed that C1 and 

C3 overlap. C3 could be called: “Collisions on highways with no shoulders”. 

 

CLUSTER 4 (C4). This cluster contains 61% of the accidents with 1 occupant. They occur on 

highways that have no shoulder (99%). The type of accident that characterizes them is the run-

off-road with/without collision (85%), and in 100% of the cases there is only one vehicle 

involved. Once again it is observed that C2 and C4 overlap. C4 could be called: “Run-off-road 

accidents and collisions with pedestrians on highways with no shoulders”. 

 

The previous definitions and values in Table 2 show that the data in C1 and C3 are more 

homogeneous that the data in C2 and C4. Table 3 shows the number of cases in each cluster that 

ranges between 19% and 40% of the total sample size. C1 stands out with close to 1,300 cases, 

whereas C2, C3 and C4 are similar in size, with 600-700 cases.  

 

(table 3) 

 

With the data used in this study, four different clusters were identified, based on accident type, 

the number of vehicles and occupant involved, the shoulder type and the shoulder pavement. It 

should be highlight that the descriptive cluster analysis in this paper is focused on getting a 

concise description for each cluster, which will be useful during the interpretation of BN results. 

 

4.2. Severity injury analysis 

Bayesian Networks (BN) are used in order to identify the main factor that contribute to crash 

severity. BN were built for the entire database (EDB) and for each one of the four clusters (C1, 

C2, C3 and C4) identified with LCC. The objective is to verify if new information and insights 

are obtained from the conjoint analysis (LCC and BN). First, the five BNs were compared in 

terms of performance indicators and complexity in order to evaluate the goodness of the models 

obtained. Next, the possibility of obtaining new information and insights from the clusters was 

studied in terms of direct dependent relationships between the variables for each BN and an 

analysis of the inference in the BNs for the clusters that improve the performance indicators, 

compared to the EDB.  

 

(Table 4) 

 

Table 4 shows accuracy, sensitivity, specificity, ROC area and HMSS for the EDB and clusters 

C1 to C4. ANOVA test was performed to measure the statistical significant difference for each 

cluster as compared to the EDB (p<0.05). The values of accuracy range from 64.0% in C1 to 

55.1% in C4. These values are within the same range found in previous studies (Abdelwahab 

and Abdel-Aty, 2001; De Oña et al., 2011; Mujalli and De Oña, 2011) that used classification 

techniques for similar objectives. Table 4 shows that only C1 (64.0%) achieved a statistically 

significant improvement of accuracy as compared with results obtained for the EDB (59.5%). 



8 

 

C3 obtained similar accuracy results to these obtained in the EDB (58.9% versus 59.5%). The 

minimum accuracy is obtained in C4, which is also the smallest cluster. With regard to 

sensitivity, both C1 and C3 obtained significant improvements if compared to the EDB. The 

same repeats for specificity and for HMSS. For ROC area, only C1 improves significantly 

(67.0%) with respect to 63.0% obtained for the EDB.  

 

Another factor to be taken into consideration is network complexity (number of arcs). All the 

clusters' networks show a fewer number of arcs than the EDB (33 arcs): C2’s BN is the simplest 

with 19 arcs; C1, C3 and C4 present 21 arcs. 

 

On the basis of these results, LCC enabled the identification of two clusters (C1 and C3) where 

the BN models' overall performance improved with regards to the EDB. This was not the case 

for clusters C2 and C4, where the results were not as good as they were for C1 and C3, and they 

did not improve the results obtained for the EDB’s BN model. 

 

Subsequently, on the basis of the BNs built for the EDB and the 4 clusters, it was possible to 

identify the direct dependence relationships between severity (SEV) and the dependant variables 

considered in the analysis. Table 5 shows the direct relationships between variables that were 

present either in the clusters or in the EDB. The clusters that share the same relationships are 

listed under the same group; in which the group refers to the number of BN that share the same 

relation (e.g. the relationship “time→lighting” (TIM→LIG) exists in the BNs built using all the 

4 clusters as well as using the EDB, however, the relationship “severity→atmospheric factors” 

(SEV→ATF) exists only in the 4 clusters).  

 

(Table 5) 

 

Table 5 shows that no direct relationship of dependency between severity (SEV) and lane with 

(LAW) can be observed in any of the cases (neither the EDB nor the clusters). As indicated in 

Section 2.2, this does not mean that no relationship between SEV and LAW exists; only that the 

relationship is not direct. In this case, indirect dependence relationships exist through other 

variables, such as pavement width (PAW) and pavement markings (ROM) in the EDB, C3 and 

C4, or PAW in C1 and C2 (see Table 5). 

 

Several variables, such as month (MON), time (TIM), day (DAY), number of injuries (NOI), 

accident type (ACT), cause (CAU), age (AGE), gender (GEN), pavement width (PAW), 

shoulder type (SHT), pavement markings (ROM) and sight distance (SID), present a direct 

dependence relationship with severity (SEV) in all groups. The fact that they appear in all the 

groups may indicate that these variables have a strong correlation with SEV. There are also 

other three direct relations that appear in all groups: time→lighting (TIM→LIG); number of 

injuries→occupants involved (NOI→OI); and pavement width→lane width (PAW→LAW). All 

the results are coherent because the variables are highly correlated with each other. 

 

However, the main reason for using LCC analysis prior to BNs is to identify relationships that 

only occur in specific clusters and not in the EDB or in the other clusters. Table 5 shows 

relationships identified in the clusters that are not identified when only the EDB is analysed. 

The table shows that a direct dependence relationship between severity and number of vehicles 

involved in the accident (SEV→VI) only exists in C2. Table 5 also shows a direct relationship 

between severity and occupant involved (SEV→OI) only for EDB and C3. There are two direct 

dependence relationships that appear in three groups: severity with paved shoulder 

(SEV→PAS) is observed in C1, C2 and C4; and severity with lighting (SEV→LIG) is observed 

in the EDB, C2 and C4. The direct relationship between severity and atmospheric factors 

(SEV→ATF) is present in all the four clusters but not in the EDB.  

 

It is also worth mentioning a series of direct dependence relationships between SEV and other 

variables that have been identified in the clusters' BN but not in the EDB’s BN. These are: 
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- A direct link between SEV and atmospheric factors (ATF) is present in all the four clusters’ 

BNs but it is not present for the EDB. In this case, an indirect dependence relationship 

exists through month (MON). 

- A direct link between SEV and paved shoulder (PAS) is present in BNs of clusters C1, C2 

and C4 but it is not present for the EDB. In this case, an indirect dependence relationship 

exists through several variables: pavement width (PAW), pavement markings (ROM), sight 

distance (SID) and shoulder type (SHT). 

- A direct link between SEV and vehicles involved (VI) is present in C2’s BN but it is not 

present for the EDB. In this case, an indirect dependence relationship exists through several 

variables: accident type (ACT), age (AGE), gender (GEN), time (TIM), number of injuries 

(NOI) and occupants involved (OI). 

 

The preceding analysis allowed the identification of further relationships between variables for 

certain types of accidents (clusters), which would not have been obtained without prior 

segmentation of the data. However, we focus on BN inference to analyse the results from a road 

safety perspective. Inference is used to determine the most significant variables that are 

associated with KSI (killed or severely injured) accidents for the EDB, C1 and C3. The analysis 

was not made for the BN models for C2 and C4 because their performance indicators were 

poorer than the EDB’s BN model. 

 

(Table 6) 

 

Table 6 assists in the identification of variables and values that contribute the most to the 

occurrence of a KSI individual in a traffic accident considering each one of the three BN models 

(EDB, C1 and C3). Since it is intended to determine which values of variables contribute the 

most to the occurrence of a KSI individual in a traffic accident, this table does not include the 

variables and values in which the values of probabilities of SI are always higher than those of 

KSI in the EDB, C1 and C3. 

 

For each variable and each BN model, the probability of a value was set to be 1.0 (setting 

evidence) and the other values of the same variable were set to be 0.0. Thus, the associated 

probability of severity was calculated. Underlined values in Table 6 show the values of 

variables in which the probability of a KSI was found to be higher than that of SI. 

 

For the EDB, Table 6 shows that assigning a probability of 1.0 to the value CP (collision with 

pedestrian) of the variable accident type (ACT), the probability of SI becomes 0.3316 and the 

probability of KSI becomes 0.6683. These probabilities are calculated from the conditional 

probability table of the BN built for the EDB.  

 

Setting evidences for the values of variables used to build the BN indicated that accident type 

(ACT), sight distance (SID), time (TIM), occupant involved (OI), age (AGE), and lighting 

(LIG) were found to be significant for the EDB. This results are coherent with previous studies 

which have highlighted some of this variables as key variables in KSI accidents (Abel-Aty 

2003; Al-Ghamdi, 2002; de Oña et al., 2011; Gray et al., 2008; Helai et al., 2008; Kashani and 

Mohyamany, 2011; Kockelman and Kweon, 2002; Pande and Abel-Aty, 2009; Montella et al., 

2011). 

 

Setting evidences in the cluster’s BN models (C1 and C3) shows similarities and differences 

with the EDB results (see Table 6). The main similarities are: 

 

- Although the values change with regards to the EDB, the variables accident type (ACT) and 

sight distance (SID) are also significant in the case of C1 and C3.  

- EDB and C3 show very similar results when setting evidences for the values of time (TIM), 

occupant involved (OI) and age (AGE). 
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Accident type (ACT) has been identified in several previous studies (Al-Ghamdi, 2002; de Oña 

et al., 2011; Kashani and Mohyamany, 2011; Montella et al., in press) as one of the key 

variables in accident severity. Particularly, in this study head-on collision (HOC) and collision 

with pedestrian (CP) were the type of accident with the highest probability of KSI (see Table 6). 

These results agree with Kockelman and Kweon (2002), who found that head on crashes were 

more dangerous than angle crashes, left-side, and right-side crashes; moreover, they found that 

they were significant in accidents that involved KSI. Chang and Wang (2006) demonstrated that 

collisions with pedestrian had a higher risk of injury than other types of collision. And de Oña et 

al., (2011) highlighted that head on collision and rollover were more significant in KSI 

accidents.  

 

Yan et al. (2008) found that drivers suffering from poor visibility are less likely to attempt to 

avoid crashes. And Montella (2011) identified that an inadequate sight distance was a major 

factor contributory in roundabout crashes. This study shows that if sight distance (SID) is 

restricted by the topography (TOP) or buildings (BUI) the probability of KSI accident increases. 

 

The number of occupants involved (NOI) in a traffic accident was found to be a significant 

variable by Dupont et al. (2010). They found that the higher the number of vehicles involved in 

an accident and the level of occupancy of these vehicles, the higher the probability for each car 

occupant to survive. This agrees with our results in which the probability of KSI accident 

increases if there is only one occupant involved. 

 

In accordance with previous studies (Tavris et al., 2001; Mujalli and de Oña, 2011), our results 

show that teenagers (TEE) have a higher probability of KSI accidents. Tavris et al. (2001) found 

that young people between 16 and 24 years were much more likely to be involved in KSI 

accidents than older drivers.  

 

When lighting conditions (LIG) are without lighting (WL) the probability of KSI is higher. This 

result was also found by Gray et al. (2008). They identified that more severe injuries are 

predicted during darkness. Abel-Aty (2003) and Helai et al. (2008) found the same results. 

Pande and Abel-Aty (2009) concluded that there is a significant correlation between lack of 

illumination and high severity crashes. Finally, de Oña et al. (2010) also pointed out that KSI 

accidents are associated with roadways without lighting. This study shows that accidents 

between 0 and 6 hours have a significant probability of being KSI. Our results also show that 

the variables time (TIM) and lighting conditions (LIG) are directly correlated (see Table 5).  

 

The main differences found between the clusters and the EDB’s inference are the following (see 

Table 6): 

- The lighting variable (LIG) is not identified as significant in clusters C1 and C3. 

- The variables time (TIM), occupants involved (OI) and age (AGE) are not identified as 

significant in cluster C1, which refers to collision on highways with shoulders. 

- The variable vehicles involved (VI), when only 1 vehicle is involved, is identified as 

significant in KSI accidents in cluster C3. This cluster contains very few accidents with 

only one vehicle involved; however all of them present KSI consequences. 

- The variables number of injuries (NOI), atmospheric factors (ATF), pavement markings 

(ROM) and pavement width (PAW) are only identified as significant in cluster C1.  

 

 

5. CONCLUSIONS AND RECOMENDATIONS 

 

This paper presents an analysis of traffic accident injury severity on rural highways conducted 

with the combined use of LCC and BN. The study uses 3,229 traffic accidents’ records on rural 

highways. It is based on the standard police reports used in Spain, with information about 18 

variables related with the injury severity of the accidents.  

 



11 

 

LCC analysis identified four clusters (C1 to C4) based on the variables accident type, shoulder 

type, paved shoulder, occupant involved and number of vehicle involved. The main differences 

in cluster identification are accident type (collisions or run-off road), and the existence of paved 

shoulders on highways. Therefore, the conclusion is that the two variables are important in 

accident analyses. 

 

BNs were built for each one of the four clusters and for the entire database (EDB). Accuracy, 

sensitivity, specificity, ROC area and HMSS were used as indicators for comparing model 

fitting (EDB’s BN vs. the clusters’ BN). The models of clusters C1 and C3 (which showed the 

highest homogeneity) show global results that are identical to or better than the model using the 

EDB. Therefore, the results show that increasing homogeneity improves the models' overall 

fitting. 

 

The results were compared with the BN that uses the EDB and the BNs generated for each 

cluster in terms of: direct dependence relationships between severity (SEV) and all the others 

variables for EDB and for all the clusters; and inference for EDB and for the two clusters that 

improved the performance indicators with regards to the EDB (C1 and C3). This comparison 

has provided information and insights from the analysis that would not have been obtained if 

only the EDB had been analysed, without making a LCC analysis beforehand.  

 

For instance, it can be seen that a set of variables (month, time, day, number of injuries, accident 

type, cause, age, gender, pavement width, shoulder type, pavement markings and sight distance) 

show direct dependence relationships with severity both in the EDB and in all the clusters. This 

implies that those variables are highly correlated with crash severity. On the other hand, no 

direct link is observed between severity and atmospheric factors in the case of the EDB, 

whereas a relationship does exist in all the clusters identifed, highlighting the important 

relationship between this two variables, which has been also identify in previous studies 

(Mujalli and De Oña, 2011; Xie et al., 2009). 

 

The results from inference analysis identify several variables that have an influence on KSI 

accidents. They are identified by EDB, and by C1 and C3. These variables are accident type 

(ACT) and sight distance (SID). In all three cases (EDB, C1 and C3), when a collision with 

pedestrians (CP) occurs on rural highways, the probability of KSI is very high (0.6663 - 0.8747, 

in Table 6). Therefore, when pedestrians are frequent on such highways (i.e. on roads that link 

two villages that are close to each other) it is advisable to take precautions against such 

accidents (e.g. use of safety barriers on stretches of road where pedestrians walk on the 

shoulder). In the three cases it is also observed that when the SID is very restricted by 

topography (TOP), the probability of KSI is very high (0.6243 - 0.7497, in Table 6). Horizontal 

and vertical traffic signs generally take limited visibility into account (e.g. signals for overtaking 

other vehicles). However, the results also reveal that when SID is restricted by buildings (BUI), 

the probability of KSI is very high for EDB and C1. Therefore, it would be advisable to take 

limited visibility into account on rural highways, and to reassess visibility where there are 

buildings are close to the road.  

 

Inference also shows that certain variables that have not been identified as significant with the 

EDB’s BN in determining whether or not an accident could be KSI, are identified as significant 

for a specific cluster. For example, in cluster C3 if there is only one vehicle involved in a 

collision (i.e. fixed object collision, run-off-road collision, or collision with pedestrian) the 

probability of KSI is higher than the probability of SI. In cluster C1, the variables number of 

injuries, atmospheric factors, pavement markings and pavement width are found to have a 

significant impact on the probability of KSI. Taking into account these results, specific road 

safety improvements could be applied. For example, in order to reduce the severity of collisions 

on highways with shoulders (cluster C1), road markings should be repainted and signs of 

narrow lanes should be used when road markings do not exist or are deleted or when pavement 
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width is less than 6 meters. None of these results would have been obtained if only the EDB had 

been analysed, with no prior LCC analysis. 

 

This study shows that the combined use of both methods (LCC and BNs) provide new 

information and insights on the main causes of accident severity that could be useful for road 

safety analysts. Therefore, this study agrees with previous research (Sohn, 1999; Karlaftis and 

Tarko, 1998; Ng et al., 2002; Wong et al., 2004; Depaire et al., 2008; Pardillo-Mayora et al., 

2010) and shows that when analysing traffic accidents, it is worthwhile to segment the accident 

records to increase data homogeneity before applying other analysis techniques.  

 

Several considerations should be kept in mind when interpreting and generalizing the results of 

this study. The results obtained in this paper are very dependent on the initial data (two lane 

highways accidents with 1, 2 or 3 vehicles involved) and by the methods used (Latent Class 

Clustering and Bayesian Networks). Different results might have been obtained if other analysis 

data and methods had been used. All clustering techniques are very sensitive to the possibility 

of finding a local maximum instead of a global maximum. In this regard, the solution found is 

dependent on the initial parameter values. To prevent ending up with a local solution, the Latent 

GOLD program uses 10 sets of random start values (Vermunt and Magidson, 2005). Bayesian 

Networks need large datasets. The number of cases in EDB and C1 are comparable with 

previous studies (De Oña et al., 2011; Mujalli and De Oña, 2011). However, because of the 

clustering procedure, C2, C3 and C4 present a limited number of cases. Therefore, BN results 

for these three clusters should be interpreted carefully. 
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Table 1. Variables, values and actual classification by severity  

NUM VARIABLES CODE VALUE TOTAL SEVERITY 

SI KSI 

1 ACT: Accident 

type 

ASC Angle or side collision 1015 57.40% 42.30% 

HOC Head-on collision 390 44.60% 55.40% 

PUC Pile up collision 414 79.20% 20.80% 

FOC Fixed objects collision 26 57.70% 42.30% 

ROR Run off road with or without collision 1125 50.30% 49.70% 

CP Collision with pedestrian 100 33.00% 67.00% 

RO Rollover 91 61.50% 38.50% 

OT Other 68 72.10% 27.90% 

2 AGE: Age TEE  < 18 or with  <18 involved 157 45.90% 54.10% 

YOU All [18-25] 456 51.50% 48.50% 

ADU All  (25-64] 1782 56.20% 43.80% 

OLD >64 or with  >64 involved 282 59.90% 40.10% 

YAA  [18-25] and (25-64] 552 59.20% 40.80% 

3 ATF: 

Atmospheric 

factors 

GW Good weather 2875 55.70% 44.30% 

LR Light rain 235 58.70% 41.30% 

HR Heavy rain 59 59.30% 40.70% 

OT Other 60 48.30% 51.70% 

4 CAU: Cause DC Driver characteristics 2969 55.20% 44.80% 

RC Road characteristics 17 70.60% 29.40% 

VC Vehicle characteristics 23 56.50% 43.50% 

OT Other 220 63.60% 36.40% 

5 DAY: Day 

 

BW Beginning of week (Monday) 417 60,70% 39,30% 

EW End of week (Friday) 1198 55.80% 44.20% 

F Festive 476 54.60% 45.40% 

WD Week day (Tuesday, Wednesday, 

Thursday) 

934 55.00% 45.00% 

WE Weekend (Saturday, Sunday) 204 52,90% 47,10% 

6 GEN: Gender M Male 2470 53.60% 46.40% 

F Female 252 58.70% 41.30% 

M=F Male equal female 427 64.90% 35.10% 

M>F More male 67 65.70% 34.30% 

F>M More female 13 76.90% 23.10% 

7 LAW: Lane 

width 

THI < 3,25 m 57 61.40% 38.60% 

MED [3,25-3,75] m 2494 57.50% 42.50% 

WID > 3, 75 m 678 49.60% 50.40% 

8 LIG: Lighting  DAY Daylight 197 55.80% 44.20% 

DU Dusk 2012 58.90% 41.10% 

IL Inssuficient 157 64.30% 35.70% 

SL Sufficient 195 51.30% 48.70% 

WL Without lighting 668 46.00% 54.00% 

9 MON: Month WIN Winter 777 53.30% 46.70% 

SPR Spring 791 57.40% 42.60% 

SUM Summer 883 54.50% 45.50% 

AUT Autumn 778 58.50% 41.50% 

10 NOI: Number 

of injuries 

[1] 1 injury 1897 57.00% 43.00% 

[2] 2 injuries 785 54.90% 45.10% 

[+2] > 2 injuries 547 53.20% 46.80% 

11 OI: Occupants 

involved 

[1] 1 occupant 826 49,40% 50.60% 

[2] 2 occupants  1266 53.20% 46.80% 

[+2] > 2 occupants 1137 63.50% 36.50% 

12 PAS: Paved 

shoulder 

N No 400 59.30% 40.80% 

Y Yes 1960 56.30% 43.70% 

NE Does not exist or impractical  869 53.30% 46.70% 

13 PAW: 

Pavement 

width 

THI < 6 m 179 47.50% 52.50% 

MED [6-7] m 429 56.90% 43.10% 

WID > 7 m 2621 56.30% 43.70% 

14 ROM: 

Pavement 

markings 

DME Does not exist or was deleted 202 50.50% 49.50% 

DMR Separate margins of roadway 98 54.10% 45.90% 

SLO Separate lanes only 2708 56.80% 43.20% 

SLD Separate lanes and define road 221 50.20% 49.80% 

Table(s)



margins 

15 SHT: Shoulder 

type 

NE Does not exist or impractical 1288 54.90% 45.10% 

THI < 1,5 m 1527 55.50% 44.50% 

MED [1,5-2,5] m 407 59.70% 40.30% 

WID > 2,5 m 7 85.70% 14.30% 

16 SID: Sight 

distance 
ATM Atmosferic 27 44.40% 55.60% 

BUI Building 530 48.70% 51.30% 

TOP Topological 6 16.70% 83.30% 

VEG 
Vegetation 2 100.00

% 

0.00% 

WR Without restriction 13 38.50% 61.50% 

OT Other 2651 57.60% 42.40% 

17 TIM: Time [0-6] [0-6] 367 48.50% 51.50% 

(6-12] (6-12] 842 59.60% 40.40% 

(12-18] (12-18] 1140 57.50% 42.50% 

(18-24] (18-24] 880 53.30% 46.70% 

18 VI: Vehicles 

involved 

[1] 1 vehicle 1285 49.60% 50.40% 

[2] 2 vehicles 1738 59.00% 41.00% 

[3] 3 vehicles 206 68.00% 32.00% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Variables, categories and probabilities of membership to each cluster 

 

VAR VALUE Cluster1 Cluster2 Cluster3 Cluster4 

OI 

1 Occupant 0% 67% 0% 61% 

2 Occupants 48% 22% 53% 25% 

> 2 Occupants 52% 11% 47% 14% 

SHT 
Does not exist or impractical 2% 2% 99% 99% 

< 1,5 m 77% 78% 1% 1% 

PAS 
yes 99% 99% 2% 1% 

Without shoulder 0% 0% 68% 70% 

ACT 

Angle or side collision 54% 0% 48% 0% 

Head- on collision 15% 0% 29% 0% 

Pile up collision 24% 0% 17% 0% 

Fixed object collision  1% 1% 1% 1% 

Run-off-road with or without 

collision 2% 83% 2% 85% 

Collision with pedestrian 0% 7% 0% 8% 

VI 
1 involved vehicle 0% 99% 0% 100% 

2 involved vehicles 88% 1% 93% 0% 

 

  



Table 3. Definition of the clusters. 

CLUSTER CARACTERIZATION CASES % 

C1 Collisions on highways with shoulder 1289 39.74% 

C2 Run-off-road accidents and collisions with pedestrian 

on highways with shoulder. 

681 21.06% 

C3 Collisions on highways without shoulders 650 20.24% 

C4 Run-off-road accidents and collisions with pedestrian 

on highways without shoulders 

609 18.96% 

 

  



Table 4. Results of the Bayesian Network in the clusters and OB. 

Subset Accuracy  Sensitivity Specificity ROC Area HMSS 

C1 64.0* 78.0* 56.0* 67.0* 65.0* 

C2 58.0 61.0 45.0 61.0 51.0 

C3 58.9 78.0* 71.0* 57.0 74.0* 

C4 55.1 47.0 37.0 56.0 41.0 

EB 59.5 69.0 52.0 63.0 59.0 

* denotes differences statistically significant (p < 0.05) 

 

  



Table 5. Relations between variables in the Bayesian networks. 

GROUPS 
5 groups 4 groups 3 groups 2 groups 1 group 

EDB; C1; C2; C3; C4 C1; C2; C3; C4 EDB; C1; C3 EDB; C3 EDB 

RELATIONS 

TIM->LIG SEV->ATF GEN->VI SEV->OI MON->ATF 

NOI->OI 

 

OI->VI 

 

TIM->DAY 

PAW->LAW 

 

EDB; C3; C4 

 

TIM->VI 

SEV->MON 

 

PAW->PAS 

 

NOI->VI 

SEV->TIM 

 

ROM->LAW 

 

ROM->PAS 

SEV->DAY 

 

C1; C2; C4 

 

LAW->PAS 

SEV->NOI 

 

SEV->PAS 

 

SHT->PAS 

SEV->PAW 

 

EDB; C2; C4 

 

PAS->SID 

SEV->SHT 

 

SEV->LIG 

 

PAS->VI 

SEV->SID 

 

EDB; C1; C4 

 

ACT->CAU 

SEV->ACT 

 

ACT->VI 

 

AGE->VI 

SEV->CAU 

   

C2 

SEV->AGE 

   

SEV->VI 

SEV->GEN 

   

C1 

SEV->ROM 

   

DAY->OI 

TOTAL 15 1 7 1 13 

 

  



Table 6. Inference results for variables that are associated with KSI in traffic accidents for EDB, C1 and 

C3. 

  EDB C1 C3 

  SI KSI SI KSI SI KSI 

ACT (Accident type) 

CP 0.3316 0.6683 0.1252 0.8747 0.1623 0.8326 

HOC 0.4462 0.5537 0.3629 0.6370 0.5354 0.4645 

SID (Sight distance) 

BUI 0.4825 0.5174 0.4249 0.5750 0.5886 0.4113 

ATM 0.4421 0.5578 0.2144 0.7855 0.6256 0.3743 

WR 0.4079 0.5920 0.5003 0.4996 0.6005 0.3994 

TOP 0.2781 0.7218 0.2502 0.7497 0.3756 0.6243 

TIM (Time) 

0-6 0.4881 0.5118 0.5871 0.4128 0.4222 0.5772 

OI (Occupants involved) 

1 0.4991 0.5008 - - 0.2502 0.7497 

AGE (Age) 

TEE 0.4577 0.5422 0.5489 0.4510 0.4575 0.5424 

LIG (Lighting) 

WL 0.4608 0.5391 0.5949 0.4050 0.6090 0.3909 

VI (Vehicles involved) 

1 0.5016 0.4983 0.5069 0.4930 0.4773 0.5226 

NOI (Number of injuries) 

>2 0.5301 0.4698 0.4881 0.5118 0.6424 0.3575 

ATF  (Atmospheric factors) 

OT 0.5585 0.4414 0.3960 0.6039 0.9168 0.0831 

ROM (Pavement markings) 

DME 0.5217 0.4782 0.3001 0.6998 0.5573 0.4426 

PAW (Pavement width) 

THI 0.5240 0.4759 0.4932 0.5067 0.5942 0.4057 

 




