Afficher la notice abrégée

dc.contributor.authorPérez Beltrán, Christian H.
dc.contributor.authorJiménez Carvelo, Ana María 
dc.contributor.authorSandoval Sicairos, Eslim S.
dc.contributor.authorOsuna Martínez, Ulises
dc.contributor.authorSantos Ballardo, Crees L.
dc.contributor.authorCarrazco Ávila, Pablo Y.
dc.contributor.authorCuevas Rodríguez, Edith O.
dc.contributor.authorCuadros Rodríguez, Luis 
dc.date.accessioned2026-02-13T10:05:38Z
dc.date.available2026-02-13T10:05:38Z
dc.date.issued2026
dc.identifier.citationPérez Beltrán, C. H.; Jiménez Carvelo, A. M.; Sandoval Sicairos, E. S. [et al]. (2026). Journal of Pharmaceutical and Biomedical Analysis Open 7, 100104. https://doi.org/10.1016/j.jpbao.2026.100104es_ES
dc.identifier.issn2949-771X
dc.identifier.urihttps://hdl.handle.net/10481/110966
dc.descriptionAMJC acknowledges the Grant (RYC2021-031993-I) funded by MICIU/AEI/501100011033 and "European Union NextGeneration EU/ PRTR".es_ES
dc.description.abstractPharmaceutical forensic toxicology is undergoing a profound transformation driven by the convergence of optical imaging technologies and machine learning methodologies. Traditionally focused on post hoc legal investigations, the field is increasingly expanding toward proactive roles in pharmaceutical quality control, counterfeit drug detection, and public health protection. This review provides a comprehensive and critical overview of the integration of machine learning–based chemometrics with optical imaging techniques in pharmaceutical forensic toxicology. Imaging modalities ranging from grayscale and red, green, blue (RGB) imaging to infrared, Raman, multispectral, and hyperspectral imaging (MSI & HSI) are discussed, with emphasis on their physical principles, data structures, and analytical capabilities. The role of supervised and unsupervised chemometric multivariate models is examined in the context of classification, authentication, and quantitative assessment of pharmaceutical products. Current applications are reviewed across key forensic scenarios, including optical identification of counterfeit and illicit drugs, non-destructive evaluation of confiscated products, retrospective toxicological investigations, and emerging portable artificial intelligence-enabled platforms. Beyond technical performance, this review critically addresses regulatory, ethical, and legal challenges associated with artificial intelligence in forensic environments, highlighting the importance of explainability, traceability, and data governance. Finally, future perspectives are discussed, emphasizing the transition toward integrated forensic ecosystems that combine optical imaging, spectral databases, and interpretable machine learning to support robust, transparent, and legally defensible toxicological decision-making.es_ES
dc.description.sponsorshipMICIU/AEI/501100011033 (RYC2021-031993-I)es_ES
dc.description.sponsorshipEuropean Union NextGeneration EU/ PRTRes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOptical imaging analysises_ES
dc.subjectArtificial intelligence es_ES
dc.subjectChemometricses_ES
dc.titleMachine learning and optical imaging for pharmaceutical forensic toxicology: A comprehensive reviewes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jpbao.2026.100104
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional