• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Anatomía y Embriología Humana
  • DAEH - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Anatomía y Embriología Humana
  • DAEH - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimized base editors enable efficient editing in cells, organoids and mice

[PDF] Optimized base editors enable efficient editing in cells, organoids and mice.pdf (1.199Mb)
Identificadores
URI: https://hdl.handle.net/10481/109751
DOI: 10.1038/nbt.4194
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Zafra, María Paz; Schatoff, Emma M.; Katti, Alyna; Foronda, Miguel; Breinig, Marco; Schweitzer, Anabel Y.; Simon, Amber; Han, Teng; Goswami, Sukanya; Montgomery, Emma; Thibado, Jordana; Kastenhuber, Edward R.; Sánchez-Rivera, Francisco J.; Shi, Junwei; Vakoc, Christopher R.; Lowe, Scott W.; Tschaharganeh, Darjus F.; Dow, Lukas E.
Editorial
Springer Nature
Materia
CRISPR-Cas9
 
Base Editing
 
Organoids
 
Cancer-associated mutations
 
Mouse models
 
Date
2018-07-03
Referencia bibliográfica
Zafra, M., Schatoff, E., Katti, A. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol 36, 888–893 (2018). https://doi.org/10.1038/nbt.4194
Sponsorship
NIH/NCI (CA195787-01), (U54OD020355), (1 F31 CA224800-01.), (F31CA192835), (CA 181280-01); Starr Cancer Consortium (I10-0095); American Cancer Society (RSG-17-202-01); Stand Up to Cancer (SU2C-AACR-DT22-17); American Association for Cancer Research SU2C; National Cancer Institute (NCI) NIH T32 CA203702; NIH T32GM07739; HHMI Hanna Gray Fellow (5T32CA160001); Geoffrey Beene Chair of Cancer Biology/Howard Hughes Medical Institute; Helmholtz Association (VH-NG-1114); German Research Foundation (DFG) B05, SFB/TR 209
Abstract
CRISPR base editing enables the creation of targeted single-base conversions without generating double-stranded breaks. However, the efficiency of current base editors is very low in many cell types. We reengineered the sequences of BE3, BE4Gam, and xBE3 by codon optimization and incorporation of additional nuclear-localization sequences. Our collection of optimized constitutive and inducible base-editing vector systems dramatically improves the efficiency by which single-nucleotide variants can be created. The reengineered base editors enable target modification in a wide range of mouse and human cell lines, and intestinal organoids. We also show that the optimized base editors mediate efficient in vivo somatic editing in the liver in adult mice.
Collections
  • DAEH - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback