Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz-Zafra, Ángel
dc.contributor.authorPigueiras-del-Real, Janet
dc.contributor.authorHeredia Jiménez, José María 
dc.contributor.authorHussain Shah, Syed Taimoor
dc.contributor.authorHussain Shah, Syed Adil
dc.contributor.authorC. Gontard, Lionel
dc.date.accessioned2025-09-18T08:49:04Z
dc.date.available2025-09-18T08:49:04Z
dc.date.issued2025-09
dc.identifier.citationRuiz-Zafra, A., Pigueiras-del-Real, J., Heredia-Jimenez, J., Shah, S. T. H., Shah, S. A. H., & Gontard, L. C. (2025). PyBodyTrack: A python library for multi-algorithm motion quantification and tracking in videos. SoftwareX, 31(102272), 102272. https://doi.org/10.1016/j.softx.2025.102272es_ES
dc.identifier.urihttps://hdl.handle.net/10481/106414
dc.description.abstractHuman movement analysis, driven by computer vision and pose tracking technologies, is gaining acceptance in healthcare, rehabilitation, sports, and daily activity monitoring. While most approaches focus on qualitative analysis (e.g., pattern recognition), objective motion quantification can provide valuable insights for diagnosis, progress tracking, and performance assessment. This paper introduces PyBodyTrack, a Python library for motion quantification using mathematical methods in real-time and pre-recorded videos. It simplifies video management and integrates with position estimators like MediaPipe, YOLO, and OpenPose. PyBodyTrack enables seamless motion quantification through standardized metrics, facilitating its integration into various applications.es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 - Maria Sklodowska-Curie (Grant Agreement N◦ 956394)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectMotion quantificationes_ES
dc.subjectPose trackinges_ES
dc.subjectComputer visiones_ES
dc.titlePyBodyTrack: A python library for multi-algorithm motion quantification and tracking in videoses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/MSC/956394es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.softx.2025.102272
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional