PyBodyTrack: A python library for multi-algorithm motion quantification and tracking in videos
Metadatos
Mostrar el registro completo del ítemAutor
Ruiz-Zafra, Ángel; Pigueiras-del-Real, Janet; Heredia Jiménez, José María; Hussain Shah, Syed Taimoor; Hussain Shah, Syed Adil; C. Gontard, LionelEditorial
Elsevier
Materia
Motion quantification Pose tracking Computer vision
Fecha
2025-09Referencia bibliográfica
Ruiz-Zafra, A., Pigueiras-del-Real, J., Heredia-Jimenez, J., Shah, S. T. H., Shah, S. A. H., & Gontard, L. C. (2025). PyBodyTrack: A python library for multi-algorithm motion quantification and tracking in videos. SoftwareX, 31(102272), 102272. https://doi.org/10.1016/j.softx.2025.102272
Patrocinador
European Union’s Horizon 2020 - Maria Sklodowska-Curie (Grant Agreement N◦ 956394)Resumen
Human movement analysis, driven by computer vision and pose tracking technologies, is gaining acceptance
in healthcare, rehabilitation, sports, and daily activity monitoring. While most approaches focus on qualitative
analysis (e.g., pattern recognition), objective motion quantification can provide valuable insights for diagnosis,
progress tracking, and performance assessment. This paper introduces PyBodyTrack, a Python library for motion
quantification using mathematical methods in real-time and pre-recorded videos. It simplifies video management and integrates with position estimators like MediaPipe, YOLO, and OpenPose. PyBodyTrack enables seamless motion quantification through standardized metrics, facilitating its integration into various applications.





