Tuning Electromagnetically Induced Transparency in a Double GaAs/AlGaAs Quantum Well with Modulated Doping
Metadatos
Mostrar el registro completo del ítemAutor
Dagua-Conda, C. A.; Gil-Corrales, J. A.; Herrero Hahn, Rebeca Victoria; Restrepo, R. L.; Mora Ramos, M. E.; Morales, A. L.; Duque, C. A.Editorial
MDPI
Materia
Asymmetric double quantum well system N-doped layer Optical properties
Fecha
2025-03-06Referencia bibliográfica
Dagua-Conda, C.A.; Gil-Corrales, J.A.; Hahn, R.V.H.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A. Tuning Electromagnetically Induced Transparency in a Double GaAs/ AlGaAs QuantumWell with Modulated Doping. Crystals 2025, 15, 248. [https://doi.org/10.3390/cryst15030248]
Patrocinador
Spanish Junta de Andalucía through a Doctoral Training Grant PREDOC-01408; Universidad EIA, Colombia, through the project “Simulación por el método de elementos finitos de las respuestas ópticas de nanoestructuras semiconductoras aplicadas en imágenes médicas” (Código: INVIM0442023)Resumen
Including an n-doped layer in asymmetric double quantum wells restricts confined
carriers into V-shaped potential profiles, forming discrete conduction subbands and
enabling intersubband transitions. Most studies on doped semiconductor heterostructures
focus on how external fields and structural parameters dictate optical absorption. However,
electromagnetically induced transparency remains largely unexplored. Here, we show that
the effect of an n-doped layer GaAs/AlxGa1−xAs in an asymmetric double quantum well
system is quite sensitive to the width and position of the doped layer. By self-consistently
solving the Poisson and Schrödinger’s equations, we determine the electronic structure
using the finite element method within the effective mass approximation. We found that the
characteristics of the n-doped layer can modulate the resonance frequencies involved in the
electromagnetically induced transparency phenomenon. Our results demonstrate that an
n-doped layer can control the electromagnetically induced transparency effect, potentially
enhancing its applications in optoelectronic devices.